Ryujinx/Ryujinx.Graphics/Graphics3d/Texture/ImageUtils.cs
gdkchan a731ab3a2a Add a new JIT compiler for CPU code (#693)
* Start of the ARMeilleure project

* Refactoring around the old IRAdapter, now renamed to PreAllocator

* Optimize the LowestBitSet method

* Add CLZ support and fix CLS implementation

* Add missing Equals and GetHashCode overrides on some structs, misc small tweaks

* Implement the ByteSwap IR instruction, and some refactoring on the assembler

* Implement the DivideUI IR instruction and fix 64-bits IDIV

* Correct constant operand type on CSINC

* Move division instructions implementation to InstEmitDiv

* Fix destination type for the ConditionalSelect IR instruction

* Implement UMULH and SMULH, with new IR instructions

* Fix some issues with shift instructions

* Fix constant types for BFM instructions

* Fix up new tests using the new V128 struct

* Update tests

* Move DIV tests to a separate file

* Add support for calls, and some instructions that depends on them

* Start adding support for SIMD & FP types, along with some of the related ARM instructions

* Fix some typos and the divide instruction with FP operands

* Fix wrong method call on Clz_V

* Implement ARM FP & SIMD move instructions, Saddlv_V, and misc. fixes

* Implement SIMD logical instructions and more misc. fixes

* Fix PSRAD x86 instruction encoding, TRN, UABD and UABDL implementations

* Implement float conversion instruction, merge in LDj3SNuD fixes, and some other misc. fixes

* Implement SIMD shift instruction and fix Dup_V

* Add SCVTF and UCVTF (vector, fixed-point) variants to the opcode table

* Fix check with tolerance on tester

* Implement FP & SIMD comparison instructions, and some fixes

* Update FCVT (Scalar) encoding on the table to support the Half-float variants

* Support passing V128 structs, some cleanup on the register allocator, merge LDj3SNuD fixes

* Use old memory access methods, made a start on SIMD memory insts support, some fixes

* Fix float constant passed to functions, save and restore non-volatile XMM registers, other fixes

* Fix arguments count with struct return values, other fixes

* More instructions

* Misc. fixes and integrate LDj3SNuD fixes

* Update tests

* Add a faster linear scan allocator, unwinding support on windows, and other changes

* Update Ryujinx.HLE

* Update Ryujinx.Graphics

* Fix V128 return pointer passing, RCX is clobbered

* Update Ryujinx.Tests

* Update ITimeZoneService

* Stop using GetFunctionPointer as that can't be called from native code, misc. fixes and tweaks

* Use generic GetFunctionPointerForDelegate method and other tweaks

* Some refactoring on the code generator, assert on invalid operations and use a separate enum for intrinsics

* Remove some unused code on the assembler

* Fix REX.W prefix regression on float conversion instructions, add some sort of profiler

* Add hardware capability detection

* Fix regression on Sha1h and revert Fcm** changes

* Add SSE2-only paths on vector extract and insert, some refactoring on the pre-allocator

* Fix silly mistake introduced on last commit on CpuId

* Generate inline stack probes when the stack allocation is too large

* Initial support for the System-V ABI

* Support multiple destination operands

* Fix SSE2 VectorInsert8 path, and other fixes

* Change placement of XMM callee save and restore code to match other compilers

* Rename Dest to Destination and Inst to Instruction

* Fix a regression related to calls and the V128 type

* Add an extra space on comments to match code style

* Some refactoring

* Fix vector insert FP32 SSE2 path

* Port over the ARM32 instructions

* Avoid memory protection races on JIT Cache

* Another fix on VectorInsert FP32 (thanks to LDj3SNuD

* Float operands don't need to use the same register when VEX is supported

* Add a new register allocator, higher quality code for hot code (tier up), and other tweaks

* Some nits, small improvements on the pre allocator

* CpuThreadState is gone

* Allow changing CPU emulators with a config entry

* Add runtime identifiers on the ARMeilleure project

* Allow switching between CPUs through a config entry (pt. 2)

* Change win10-x64 to win-x64 on projects

* Update the Ryujinx project to use ARMeilleure

* Ensure that the selected register is valid on the hybrid allocator

* Allow exiting on returns to 0 (should fix test regression)

* Remove register assignments for most used variables on the hybrid allocator

* Do not use fixed registers as spill temp

* Add missing namespace and remove unneeded using

* Address PR feedback

* Fix types, etc

* Enable AssumeStrictAbiCompliance by default

* Ensure that Spill and Fill don't load or store any more than necessary
2019-08-08 21:56:22 +03:00

561 lines
27 KiB
C#

using ARMeilleure.Memory;
using OpenTK.Graphics.OpenGL;
using Ryujinx.Graphics.Gal;
using Ryujinx.Graphics.Memory;
using System;
using System.Collections.Generic;
namespace Ryujinx.Graphics.Texture
{
public static class ImageUtils
{
[Flags]
private enum TargetBuffer
{
Color = 1 << 0,
Depth = 1 << 1,
Stencil = 1 << 2,
DepthStencil = Depth | Stencil
}
private struct ImageDescriptor
{
public int BytesPerPixel { get; private set; }
public int BlockWidth { get; private set; }
public int BlockHeight { get; private set; }
public int BlockDepth { get; private set; }
public TargetBuffer Target { get; private set; }
public ImageDescriptor(int bytesPerPixel, int blockWidth, int blockHeight, int blockDepth, TargetBuffer target)
{
BytesPerPixel = bytesPerPixel;
BlockWidth = blockWidth;
BlockHeight = blockHeight;
BlockDepth = blockDepth;
Target = target;
}
}
private const GalImageFormat Snorm = GalImageFormat.Snorm;
private const GalImageFormat Unorm = GalImageFormat.Unorm;
private const GalImageFormat Sint = GalImageFormat.Sint;
private const GalImageFormat Uint = GalImageFormat.Uint;
private const GalImageFormat Float = GalImageFormat.Float;
private const GalImageFormat Srgb = GalImageFormat.Srgb;
private static readonly Dictionary<GalTextureFormat, GalImageFormat> TextureTable =
new Dictionary<GalTextureFormat, GalImageFormat>()
{
{ GalTextureFormat.Rgba32, GalImageFormat.Rgba32 | Sint | Uint | Float },
{ GalTextureFormat.Rgba16, GalImageFormat.Rgba16 | Snorm | Unorm | Sint | Uint | Float },
{ GalTextureFormat.Rg32, GalImageFormat.Rg32 | Sint | Uint | Float },
{ GalTextureFormat.Rgba8, GalImageFormat.Rgba8 | Snorm | Unorm | Sint | Uint | Srgb },
{ GalTextureFormat.Rgb10A2, GalImageFormat.Rgb10A2 | Snorm | Unorm | Sint | Uint },
{ GalTextureFormat.Rg8, GalImageFormat.Rg8 | Snorm | Unorm | Sint | Uint },
{ GalTextureFormat.R16, GalImageFormat.R16 | Snorm | Unorm | Sint | Uint | Float },
{ GalTextureFormat.R8, GalImageFormat.R8 | Snorm | Unorm | Sint | Uint },
{ GalTextureFormat.Rg16, GalImageFormat.Rg16 | Snorm | Unorm | Sint | Float },
{ GalTextureFormat.R32, GalImageFormat.R32 | Sint | Uint | Float },
{ GalTextureFormat.Rgba4, GalImageFormat.Rgba4 | Unorm },
{ GalTextureFormat.Rgb5A1, GalImageFormat.Rgb5A1 | Unorm },
{ GalTextureFormat.Rgb565, GalImageFormat.Rgb565 | Unorm },
{ GalTextureFormat.R11G11B10F, GalImageFormat.R11G11B10 | Float },
{ GalTextureFormat.D24S8, GalImageFormat.D24S8 | Unorm | Uint },
{ GalTextureFormat.D32F, GalImageFormat.D32 | Float },
{ GalTextureFormat.D32Fx24S8, GalImageFormat.D32S8 | Float },
{ GalTextureFormat.D16, GalImageFormat.D16 | Unorm },
// Compressed formats
{ GalTextureFormat.BptcSfloat, GalImageFormat.BptcSfloat | Float },
{ GalTextureFormat.BptcUfloat, GalImageFormat.BptcUfloat | Float },
{ GalTextureFormat.BptcUnorm, GalImageFormat.BptcUnorm | Unorm | Srgb },
{ GalTextureFormat.BC1, GalImageFormat.BC1 | Unorm | Srgb },
{ GalTextureFormat.BC2, GalImageFormat.BC2 | Unorm | Srgb },
{ GalTextureFormat.BC3, GalImageFormat.BC3 | Unorm | Srgb },
{ GalTextureFormat.BC4, GalImageFormat.BC4 | Unorm | Snorm },
{ GalTextureFormat.BC5, GalImageFormat.BC5 | Unorm | Snorm },
{ GalTextureFormat.Astc2D4x4, GalImageFormat.Astc2D4x4 | Unorm | Srgb },
{ GalTextureFormat.Astc2D5x5, GalImageFormat.Astc2D5x5 | Unorm | Srgb },
{ GalTextureFormat.Astc2D6x6, GalImageFormat.Astc2D6x6 | Unorm | Srgb },
{ GalTextureFormat.Astc2D8x8, GalImageFormat.Astc2D8x8 | Unorm | Srgb },
{ GalTextureFormat.Astc2D10x10, GalImageFormat.Astc2D10x10 | Unorm | Srgb },
{ GalTextureFormat.Astc2D12x12, GalImageFormat.Astc2D12x12 | Unorm | Srgb },
{ GalTextureFormat.Astc2D5x4, GalImageFormat.Astc2D5x4 | Unorm | Srgb },
{ GalTextureFormat.Astc2D6x5, GalImageFormat.Astc2D6x5 | Unorm | Srgb },
{ GalTextureFormat.Astc2D8x6, GalImageFormat.Astc2D8x6 | Unorm | Srgb },
{ GalTextureFormat.Astc2D10x8, GalImageFormat.Astc2D10x8 | Unorm | Srgb },
{ GalTextureFormat.Astc2D12x10, GalImageFormat.Astc2D12x10 | Unorm | Srgb },
{ GalTextureFormat.Astc2D8x5, GalImageFormat.Astc2D8x5 | Unorm | Srgb },
{ GalTextureFormat.Astc2D10x5, GalImageFormat.Astc2D10x5 | Unorm | Srgb },
{ GalTextureFormat.Astc2D10x6, GalImageFormat.Astc2D10x6 | Unorm | Srgb }
};
private static readonly Dictionary<GalImageFormat, ImageDescriptor> ImageTable =
new Dictionary<GalImageFormat, ImageDescriptor>()
{
{ GalImageFormat.Rgba32, new ImageDescriptor(16, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgba16, new ImageDescriptor(8, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rg32, new ImageDescriptor(8, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgbx8, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgba8, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Bgra8, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgb10A2, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.R32, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgba4, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.BptcSfloat, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.BptcUfloat, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.Bgr5A1, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgb5A1, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rgb565, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Bgr565, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.BptcUnorm, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.Rg16, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.Rg8, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.R16, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.R8, new ImageDescriptor(1, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.R11G11B10, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Color) },
{ GalImageFormat.BC1, new ImageDescriptor(8, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.BC2, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.BC3, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.BC4, new ImageDescriptor(8, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.BC5, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D4x4, new ImageDescriptor(16, 4, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D5x5, new ImageDescriptor(16, 5, 5, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D6x6, new ImageDescriptor(16, 6, 6, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D8x8, new ImageDescriptor(16, 8, 8, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D10x10, new ImageDescriptor(16, 10, 10, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D12x12, new ImageDescriptor(16, 12, 12, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D5x4, new ImageDescriptor(16, 5, 4, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D6x5, new ImageDescriptor(16, 6, 5, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D8x6, new ImageDescriptor(16, 8, 6, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D10x8, new ImageDescriptor(16, 10, 8, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D12x10, new ImageDescriptor(16, 12, 10, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D8x5, new ImageDescriptor(16, 8, 5, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D10x5, new ImageDescriptor(16, 10, 5, 1, TargetBuffer.Color) },
{ GalImageFormat.Astc2D10x6, new ImageDescriptor(16, 10, 6, 1, TargetBuffer.Color) },
{ GalImageFormat.D16, new ImageDescriptor(2, 1, 1, 1, TargetBuffer.Depth) },
{ GalImageFormat.D24, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Depth) },
{ GalImageFormat.D24S8, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.DepthStencil) },
{ GalImageFormat.D32, new ImageDescriptor(4, 1, 1, 1, TargetBuffer.Depth) },
{ GalImageFormat.D32S8, new ImageDescriptor(8, 1, 1, 1, TargetBuffer.DepthStencil) }
};
public static GalImageFormat ConvertTexture(
GalTextureFormat format,
GalTextureType rType,
GalTextureType gType,
GalTextureType bType,
GalTextureType aType,
bool convSrgb)
{
if (!TextureTable.TryGetValue(format, out GalImageFormat imageFormat))
{
throw new NotImplementedException($"Format 0x{((int)format):x} not implemented!");
}
if (!HasDepth(imageFormat) && (rType != gType || rType != bType || rType != aType))
{
throw new NotImplementedException("Per component types are not implemented!");
}
GalImageFormat formatType = convSrgb ? Srgb : GetFormatType(rType);
GalImageFormat combinedFormat = (imageFormat & GalImageFormat.FormatMask) | formatType;
if (!imageFormat.HasFlag(formatType))
{
throw new NotImplementedException($"Format \"{combinedFormat}\" not implemented!");
}
return combinedFormat;
}
public static GalImageFormat ConvertSurface(GalSurfaceFormat format)
{
switch (format)
{
case GalSurfaceFormat.Rgba32Float: return GalImageFormat.Rgba32 | Float;
case GalSurfaceFormat.Rgba32Uint: return GalImageFormat.Rgba32 | Uint;
case GalSurfaceFormat.Rgba16Float: return GalImageFormat.Rgba16 | Float;
case GalSurfaceFormat.Rgba16Unorm: return GalImageFormat.Rgba16 | Unorm;
case GalSurfaceFormat.Rg32Float: return GalImageFormat.Rg32 | Float;
case GalSurfaceFormat.Rg32Sint: return GalImageFormat.Rg32 | Sint;
case GalSurfaceFormat.Rg32Uint: return GalImageFormat.Rg32 | Uint;
case GalSurfaceFormat.Bgra8Unorm: return GalImageFormat.Bgra8 | Unorm;
case GalSurfaceFormat.Bgra8Srgb: return GalImageFormat.Bgra8 | Srgb;
case GalSurfaceFormat.Rgb10A2Unorm: return GalImageFormat.Rgb10A2 | Unorm;
case GalSurfaceFormat.Rgba8Unorm: return GalImageFormat.Rgba8 | Unorm;
case GalSurfaceFormat.Rgba8Srgb: return GalImageFormat.Rgba8 | Srgb;
case GalSurfaceFormat.Rgba8Snorm: return GalImageFormat.Rgba8 | Snorm;
case GalSurfaceFormat.Rg16Snorm: return GalImageFormat.Rg16 | Snorm;
case GalSurfaceFormat.Rg16Unorm: return GalImageFormat.Rg16 | Unorm;
case GalSurfaceFormat.Rg16Sint: return GalImageFormat.Rg16 | Sint;
case GalSurfaceFormat.Rg16Float: return GalImageFormat.Rg16 | Float;
case GalSurfaceFormat.R11G11B10Float: return GalImageFormat.R11G11B10 | Float;
case GalSurfaceFormat.R32Float: return GalImageFormat.R32 | Float;
case GalSurfaceFormat.R32Uint: return GalImageFormat.R32 | Uint;
case GalSurfaceFormat.Rg8Unorm: return GalImageFormat.Rg8 | Unorm;
case GalSurfaceFormat.Rg8Snorm: return GalImageFormat.Rg8 | Snorm;
case GalSurfaceFormat.R16Float: return GalImageFormat.R16 | Float;
case GalSurfaceFormat.R16Unorm: return GalImageFormat.R16 | Unorm;
case GalSurfaceFormat.R16Uint: return GalImageFormat.R16 | Uint;
case GalSurfaceFormat.R8Unorm: return GalImageFormat.R8 | Unorm;
case GalSurfaceFormat.R8Uint: return GalImageFormat.R8 | Uint;
case GalSurfaceFormat.B5G6R5Unorm: return GalImageFormat.Rgb565 | Unorm;
case GalSurfaceFormat.Bgr5A1Unorm: return GalImageFormat.Bgr5A1 | Unorm;
case GalSurfaceFormat.Rgbx8Unorm: return GalImageFormat.Rgbx8 | Unorm;
}
throw new NotImplementedException(format.ToString());
}
public static GalImageFormat ConvertZeta(GalZetaFormat format)
{
switch (format)
{
case GalZetaFormat.D32Float: return GalImageFormat.D32 | Float;
case GalZetaFormat.S8D24Unorm: return GalImageFormat.D24S8 | Unorm;
case GalZetaFormat.D16Unorm: return GalImageFormat.D16 | Unorm;
case GalZetaFormat.D24X8Unorm: return GalImageFormat.D24 | Unorm;
case GalZetaFormat.D24S8Unorm: return GalImageFormat.D24S8 | Unorm;
case GalZetaFormat.D32S8X24Float: return GalImageFormat.D32S8 | Float;
}
throw new NotImplementedException(format.ToString());
}
public static byte[] ReadTexture(IMemory memory, GalImage image, long position)
{
IMemoryManager cpuMemory;
if (memory is NvGpuVmm vmm)
{
cpuMemory = vmm.Memory;
}
else
{
cpuMemory = (IMemoryManager)memory;
}
ISwizzle swizzle = TextureHelper.GetSwizzle(image);
ImageDescriptor desc = GetImageDescriptor(image.Format);
(int width, int height, int depth) = GetImageSizeInBlocks(image);
int bytesPerPixel = desc.BytesPerPixel;
// Note: Each row of the texture needs to be aligned to 4 bytes.
int pitch = (width * bytesPerPixel + 3) & ~3;
int dataLayerSize = height * pitch * depth;
byte[] data = new byte[dataLayerSize * image.LayerCount];
int targetMipLevel = image.MaxMipmapLevel <= 1 ? 1 : image.MaxMipmapLevel - 1;
int layerOffset = GetLayerOffset(image, targetMipLevel);
for (int layer = 0; layer < image.LayerCount; layer++)
{
for (int z = 0; z < depth; z++)
{
for (int y = 0; y < height; y++)
{
int outOffs = (dataLayerSize * layer) + y * pitch + (z * width * height * bytesPerPixel);
for (int x = 0; x < width; x++)
{
long offset = (uint)swizzle.GetSwizzleOffset(x, y, z);
cpuMemory.ReadBytes(position + (layerOffset * layer) + offset, data, outOffs, bytesPerPixel);
outOffs += bytesPerPixel;
}
}
}
}
return data;
}
public static void WriteTexture(NvGpuVmm vmm, GalImage image, long position, byte[] data)
{
ISwizzle swizzle = TextureHelper.GetSwizzle(image);
ImageDescriptor desc = GetImageDescriptor(image.Format);
(int width, int height, int depth) = GetImageSizeInBlocks(image);
int bytesPerPixel = desc.BytesPerPixel;
int inOffs = 0;
for (int z = 0; z < depth; z++)
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
long offset = (uint)swizzle.GetSwizzleOffset(x, y, z);
vmm.Memory.WriteBytes(position + offset, data, inOffs, bytesPerPixel);
inOffs += bytesPerPixel;
}
}
// TODO: Support non 2D
public static bool CopyTexture(
NvGpuVmm vmm,
GalImage srcImage,
GalImage dstImage,
long srcAddress,
long dstAddress,
int srcX,
int srcY,
int dstX,
int dstY,
int width,
int height)
{
ISwizzle srcSwizzle = TextureHelper.GetSwizzle(srcImage);
ISwizzle dstSwizzle = TextureHelper.GetSwizzle(dstImage);
ImageDescriptor desc = GetImageDescriptor(srcImage.Format);
if (GetImageDescriptor(dstImage.Format).BytesPerPixel != desc.BytesPerPixel)
{
return false;
}
int bytesPerPixel = desc.BytesPerPixel;
for (int y = 0; y < height; y++)
for (int x = 0; x < width; x++)
{
long srcOffset = (uint)srcSwizzle.GetSwizzleOffset(srcX + x, srcY + y, 0);
long dstOffset = (uint)dstSwizzle.GetSwizzleOffset(dstX + x, dstY + y, 0);
byte[] texel = vmm.ReadBytes(srcAddress + srcOffset, bytesPerPixel);
vmm.WriteBytes(dstAddress + dstOffset, texel);
}
return true;
}
public static int GetSize(GalImage image)
{
ImageDescriptor desc = GetImageDescriptor(image.Format);
int componentCount = GetCoordsCountTextureTarget(image.TextureTarget);
if (IsArray(image.TextureTarget))
componentCount--;
int width = DivRoundUp(image.Width, desc.BlockWidth);
int height = DivRoundUp(image.Height, desc.BlockHeight);
int depth = DivRoundUp(image.Depth, desc.BlockDepth);
switch (componentCount)
{
case 1:
return desc.BytesPerPixel * width * image.LayerCount;
case 2:
return desc.BytesPerPixel * width * height * image.LayerCount;
case 3:
return desc.BytesPerPixel * width * height * depth * image.LayerCount;
default:
throw new InvalidOperationException($"Invalid component count: {componentCount}");
}
}
public static int GetGpuSize(GalImage image, bool forcePitch = false)
{
return TextureHelper.GetSwizzle(image).GetImageSize(image.MaxMipmapLevel) * image.LayerCount;
}
public static int GetLayerOffset(GalImage image, int mipLevel)
{
if (mipLevel <= 0)
{
mipLevel = 1;
}
return TextureHelper.GetSwizzle(image).GetMipOffset(mipLevel);
}
public static int GetPitch(GalImageFormat format, int width)
{
ImageDescriptor desc = GetImageDescriptor(format);
int pitch = desc.BytesPerPixel * DivRoundUp(width, desc.BlockWidth);
pitch = (pitch + 0x1f) & ~0x1f;
return pitch;
}
public static int GetBlockWidth(GalImageFormat format)
{
return GetImageDescriptor(format).BlockWidth;
}
public static int GetBlockHeight(GalImageFormat format)
{
return GetImageDescriptor(format).BlockHeight;
}
public static int GetBlockDepth(GalImageFormat format)
{
return GetImageDescriptor(format).BlockDepth;
}
public static int GetAlignedWidth(GalImage image)
{
ImageDescriptor desc = GetImageDescriptor(image.Format);
int alignMask;
if (image.Layout == GalMemoryLayout.BlockLinear)
{
alignMask = image.TileWidth * (64 / desc.BytesPerPixel) - 1;
}
else
{
alignMask = (32 / desc.BytesPerPixel) - 1;
}
return (image.Width + alignMask) & ~alignMask;
}
public static (int Width, int Height, int Depth) GetImageSizeInBlocks(GalImage image)
{
ImageDescriptor desc = GetImageDescriptor(image.Format);
return (DivRoundUp(image.Width, desc.BlockWidth),
DivRoundUp(image.Height, desc.BlockHeight),
DivRoundUp(image.Depth, desc.BlockDepth));
}
public static int GetBytesPerPixel(GalImageFormat format)
{
return GetImageDescriptor(format).BytesPerPixel;
}
private static int DivRoundUp(int lhs, int rhs)
{
return (lhs + (rhs - 1)) / rhs;
}
public static bool HasColor(GalImageFormat format)
{
return (GetImageDescriptor(format).Target & TargetBuffer.Color) != 0;
}
public static bool HasDepth(GalImageFormat format)
{
return (GetImageDescriptor(format).Target & TargetBuffer.Depth) != 0;
}
public static bool HasStencil(GalImageFormat format)
{
return (GetImageDescriptor(format).Target & TargetBuffer.Stencil) != 0;
}
public static bool IsCompressed(GalImageFormat format)
{
ImageDescriptor desc = GetImageDescriptor(format);
return (desc.BlockWidth | desc.BlockHeight) != 1;
}
private static ImageDescriptor GetImageDescriptor(GalImageFormat format)
{
GalImageFormat pixelFormat = format & GalImageFormat.FormatMask;
if (ImageTable.TryGetValue(pixelFormat, out ImageDescriptor descriptor))
{
return descriptor;
}
throw new NotImplementedException($"Format \"{pixelFormat}\" not implemented!");
}
private static GalImageFormat GetFormatType(GalTextureType type)
{
switch (type)
{
case GalTextureType.Snorm: return Snorm;
case GalTextureType.Unorm: return Unorm;
case GalTextureType.Sint: return Sint;
case GalTextureType.Uint: return Uint;
case GalTextureType.Float: return Float;
default: throw new NotImplementedException(((int)type).ToString());
}
}
public static TextureTarget GetTextureTarget(GalTextureTarget galTextureTarget)
{
switch (galTextureTarget)
{
case GalTextureTarget.OneD:
return TextureTarget.Texture1D;
case GalTextureTarget.TwoD:
case GalTextureTarget.TwoDNoMipMap:
return TextureTarget.Texture2D;
case GalTextureTarget.ThreeD:
return TextureTarget.Texture3D;
case GalTextureTarget.OneDArray:
return TextureTarget.Texture1DArray;
case GalTextureTarget.OneDBuffer:
return TextureTarget.TextureBuffer;
case GalTextureTarget.TwoDArray:
return TextureTarget.Texture2DArray;
case GalTextureTarget.CubeMap:
return TextureTarget.TextureCubeMap;
case GalTextureTarget.CubeArray:
return TextureTarget.TextureCubeMapArray;
default:
throw new NotSupportedException($"Texture target {galTextureTarget} currently not supported!");
}
}
public static bool IsArray(GalTextureTarget textureTarget)
{
switch (textureTarget)
{
case GalTextureTarget.OneDArray:
case GalTextureTarget.TwoDArray:
case GalTextureTarget.CubeArray:
return true;
default:
return false;
}
}
public static int GetCoordsCountTextureTarget(GalTextureTarget textureTarget)
{
switch (textureTarget)
{
case GalTextureTarget.OneD:
return 1;
case GalTextureTarget.OneDArray:
case GalTextureTarget.OneDBuffer:
case GalTextureTarget.TwoD:
case GalTextureTarget.TwoDNoMipMap:
return 2;
case GalTextureTarget.ThreeD:
case GalTextureTarget.TwoDArray:
case GalTextureTarget.CubeMap:
return 3;
case GalTextureTarget.CubeArray:
return 4;
default:
throw new NotImplementedException($"TextureTarget.{textureTarget} not implemented yet.");
}
}
}
}