dolphin/Source/Core/VideoCommon/Src/VertexLoader.cpp

716 lines
23 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include <assert.h>
#include "Common.h"
#include "VideoCommon.h"
#include "VideoConfig.h"
#include "MemoryUtil.h"
#include "StringUtil.h"
#include "x64Emitter.h"
2013-02-26 20:49:00 +01:00
#include "x64ABI.h"
#include "PixelEngine.h"
#include "Host.h"
#include "LookUpTables.h"
#include "Statistics.h"
#include "VertexLoaderManager.h"
#include "VertexLoader.h"
#include "BPMemory.h"
#include "DataReader.h"
#include "VertexManagerBase.h"
#include "VertexLoader_Position.h"
#include "VertexLoader_Normal.h"
#include "VertexLoader_Color.h"
#include "VertexLoader_TextCoord.h"
//BBox
#include "XFMemory.h"
extern float GC_ALIGNED16(g_fProjectionMatrix[16]);
2013-02-26 20:49:00 +01:00
#ifndef _M_GENERIC
#ifndef __APPLE__
#define USE_JIT
2013-02-26 20:49:00 +01:00
#endif
#endif
#define COMPILED_CODE_SIZE 4096
NativeVertexFormat *g_nativeVertexFmt;
#ifndef _WIN32
#undef inline
#define inline
#endif
// Matrix components are first in GC format but later in PC format - we need to store it temporarily
// when decoding each vertex.
static u8 s_curposmtx;
static u8 s_curtexmtx[8];
static int s_texmtxwrite = 0;
static int s_texmtxread = 0;
static int loop_counter;
// Vertex loaders read these. Although the scale ones should be baked into the shader.
int tcIndex;
int colIndex;
TVtxAttr* pVtxAttr;
int colElements[2];
float posScale;
float tcScale[8];
// bbox must read vertex position, so convert it to this buffer
static float s_bbox_vertex_buffer[3];
static u8 *s_bbox_pCurBufferPointer_orig;
static const float fractionTable[32] = {
1.0f / (1U << 0), 1.0f / (1U << 1), 1.0f / (1U << 2), 1.0f / (1U << 3),
1.0f / (1U << 4), 1.0f / (1U << 5), 1.0f / (1U << 6), 1.0f / (1U << 7),
1.0f / (1U << 8), 1.0f / (1U << 9), 1.0f / (1U << 10), 1.0f / (1U << 11),
1.0f / (1U << 12), 1.0f / (1U << 13), 1.0f / (1U << 14), 1.0f / (1U << 15),
1.0f / (1U << 16), 1.0f / (1U << 17), 1.0f / (1U << 18), 1.0f / (1U << 19),
1.0f / (1U << 20), 1.0f / (1U << 21), 1.0f / (1U << 22), 1.0f / (1U << 23),
1.0f / (1U << 24), 1.0f / (1U << 25), 1.0f / (1U << 26), 1.0f / (1U << 27),
1.0f / (1U << 28), 1.0f / (1U << 29), 1.0f / (1U << 30), 1.0f / (1U << 31),
};
2013-03-06 18:58:15 +01:00
using namespace Gen;
void LOADERDECL PosMtx_ReadDirect_UByte()
{
s_curposmtx = DataReadU8() & 0x3f;
PRIM_LOG("posmtx: %d, ", s_curposmtx);
}
void LOADERDECL PosMtx_Write()
{
2013-02-22 09:19:59 +01:00
DataWrite<u8>(s_curposmtx);
DataWrite<u8>(0);
DataWrite<u8>(0);
DataWrite<u8>(0);
}
void LOADERDECL UpdateBoundingBoxPrepare()
{
if (!PixelEngine::bbox_active)
return;
// set our buffer as videodata buffer, so we will get a copy of the vertex positions
// this is a big hack, but so we can use the same converting function then without bbox
s_bbox_pCurBufferPointer_orig = VertexManager::s_pCurBufferPointer;
VertexManager::s_pCurBufferPointer = (u8*)s_bbox_vertex_buffer;
}
void LOADERDECL UpdateBoundingBox()
{
if (!PixelEngine::bbox_active)
return;
// reset videodata pointer
VertexManager::s_pCurBufferPointer = s_bbox_pCurBufferPointer_orig;
// copy vertex pointers
memcpy(VertexManager::s_pCurBufferPointer, s_bbox_vertex_buffer, 12);
VertexManager::s_pCurBufferPointer += 12;
// We must transform the just loaded point by the current world and projection matrix - in software.
// Then convert to screen space and update the bounding box.
float p[3] = {s_bbox_vertex_buffer[0], s_bbox_vertex_buffer[1], s_bbox_vertex_buffer[2]};
const float *world_matrix = (float*)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
const float *proj_matrix = &g_fProjectionMatrix[0];
float t[3];
t[0] = p[0] * world_matrix[0] + p[1] * world_matrix[1] + p[2] * world_matrix[2] + world_matrix[3];
t[1] = p[0] * world_matrix[4] + p[1] * world_matrix[5] + p[2] * world_matrix[6] + world_matrix[7];
t[2] = p[0] * world_matrix[8] + p[1] * world_matrix[9] + p[2] * world_matrix[10] + world_matrix[11];
float o[3];
o[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3];
o[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7];
o[2] = t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15];
o[0] /= o[2];
o[1] /= o[2];
// Max width seems to be 608, while max height is 480
// Here height is set to 484 as BBox bottom always seems to be off by a few pixels
o[0] = (o[0] + 1.0f) * 304.0f;
o[1] = (1.0f - o[1]) * 242.0f;
if (o[0] < PixelEngine::bbox[0]) PixelEngine::bbox[0] = (u16) std::max(0.0f, o[0]);
if (o[0] > PixelEngine::bbox[1]) PixelEngine::bbox[1] = (u16) o[0];
if (o[1] < PixelEngine::bbox[2]) PixelEngine::bbox[2] = (u16) std::max(0.0f, o[1]);
if (o[1] > PixelEngine::bbox[3]) PixelEngine::bbox[3] = (u16) o[1];
}
void LOADERDECL TexMtx_ReadDirect_UByte()
{
s_curtexmtx[s_texmtxread] = DataReadU8() & 0x3f;
PRIM_LOG("texmtx%d: %d, ", s_texmtxread, s_curtexmtx[s_texmtxread]);
s_texmtxread++;
}
void LOADERDECL TexMtx_Write_Float()
{
2013-02-22 09:19:59 +01:00
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}
void LOADERDECL TexMtx_Write_Float2()
{
2013-02-22 09:19:59 +01:00
DataWrite(0.f);
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
}
void LOADERDECL TexMtx_Write_Float4()
{
2013-02-22 09:19:59 +01:00
DataWrite(0.f);
DataWrite(0.f);
DataWrite(float(s_curtexmtx[s_texmtxwrite++]));
// Just to fill out with 0.
DataWrite(0.f);
}
VertexLoader::VertexLoader(const TVtxDesc &vtx_desc, const VAT &vtx_attr)
{
m_compiledCode = NULL;
m_numLoadedVertices = 0;
m_VertexSize = 0;
m_numPipelineStages = 0;
m_NativeFmt = g_vertex_manager->CreateNativeVertexFormat();
loop_counter = 0;
VertexLoader_Normal::Init();
VertexLoader_Position::Init();
VertexLoader_TextCoord::Init();
m_VtxDesc = vtx_desc;
SetVAT(vtx_attr.g0.Hex, vtx_attr.g1.Hex, vtx_attr.g2.Hex);
2013-02-26 20:49:00 +01:00
#ifdef USE_JIT
AllocCodeSpace(COMPILED_CODE_SIZE);
CompileVertexTranslator();
WriteProtect();
2013-03-06 18:58:15 +01:00
#else
CompileVertexTranslator();
2013-02-26 20:49:00 +01:00
#endif
}
VertexLoader::~VertexLoader()
{
2013-02-26 20:49:00 +01:00
#ifdef USE_JIT
FreeCodeSpace();
2013-02-26 20:49:00 +01:00
#endif
delete m_NativeFmt;
}
void VertexLoader::CompileVertexTranslator()
{
m_VertexSize = 0;
const TVtxAttr &vtx_attr = m_VtxAttr;
#ifdef USE_JIT
if (m_compiledCode)
PanicAlert("trying to recompile a vtx translator");
m_compiledCode = GetCodePtr();
ABI_EmitPrologue(4);
// Start loop here
const u8 *loop_start = GetCodePtr();
// Reset component counters if present in vertex format only.
if (m_VtxDesc.Tex0Coord || m_VtxDesc.Tex1Coord || m_VtxDesc.Tex2Coord || m_VtxDesc.Tex3Coord ||
m_VtxDesc.Tex4Coord || m_VtxDesc.Tex5Coord || m_VtxDesc.Tex6Coord || m_VtxDesc.Tex7Coord) {
WriteSetVariable(32, &tcIndex, Imm32(0));
}
if (m_VtxDesc.Color0 || m_VtxDesc.Color1) {
WriteSetVariable(32, &colIndex, Imm32(0));
}
if (m_VtxDesc.Tex0MatIdx || m_VtxDesc.Tex1MatIdx || m_VtxDesc.Tex2MatIdx || m_VtxDesc.Tex3MatIdx ||
m_VtxDesc.Tex4MatIdx || m_VtxDesc.Tex5MatIdx || m_VtxDesc.Tex6MatIdx || m_VtxDesc.Tex7MatIdx) {
WriteSetVariable(32, &s_texmtxwrite, Imm32(0));
WriteSetVariable(32, &s_texmtxread, Imm32(0));
}
#endif
// Colors
const u32 col[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
// TextureCoord
// Since m_VtxDesc.Text7Coord is broken across a 32 bit word boundary, retrieve its value manually.
// If we didn't do this, the vertex format would be read as one bit offset from where it should be, making
// 01 become 00, and 10/11 become 01
const u32 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, (const u32)((m_VtxDesc.Hex >> 31) & 3)
};
// Reset pipeline
m_numPipelineStages = 0;
// It's a bit ugly that we poke inside m_NativeFmt in this function. Planning to fix this.
m_NativeFmt->m_components = 0;
// Position in pc vertex format.
int nat_offset = 0;
PortableVertexDeclaration vtx_decl;
memset(&vtx_decl, 0, sizeof(vtx_decl));
for (int i = 0; i < 8; i++) {
vtx_decl.texcoord_offset[i] = -1;
}
// m_VBVertexStride for texmtx and posmtx is computed later when writing.
// Position Matrix Index
if (m_VtxDesc.PosMatIdx) {
WriteCall(PosMtx_ReadDirect_UByte);
m_NativeFmt->m_components |= VB_HAS_POSMTXIDX;
m_VertexSize += 1;
}
if (m_VtxDesc.Tex0MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX0; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex1MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX1; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex2MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX2; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex3MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX3; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex4MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX4; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex5MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX5; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex6MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX6; WriteCall(TexMtx_ReadDirect_UByte); }
if (m_VtxDesc.Tex7MatIdx) {m_VertexSize += 1; m_NativeFmt->m_components |= VB_HAS_TEXMTXIDX7; WriteCall(TexMtx_ReadDirect_UByte); }
// Write vertex position loader
if(g_ActiveConfig.bUseBBox) {
WriteCall(UpdateBoundingBoxPrepare);
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
WriteCall(UpdateBoundingBox);
} else {
WriteCall(VertexLoader_Position::GetFunction(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements));
}
m_VertexSize += VertexLoader_Position::GetSize(m_VtxDesc.Position, m_VtxAttr.PosFormat, m_VtxAttr.PosElements);
nat_offset += 12;
// Normals
vtx_decl.num_normals = 0;
if (m_VtxDesc.Normal != NOT_PRESENT)
{
m_VertexSize += VertexLoader_Normal::GetSize(m_VtxDesc.Normal,
m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
TPipelineFunction pFunc = VertexLoader_Normal::GetFunction(m_VtxDesc.Normal,
m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
if (pFunc == 0)
{
char temp[256];
sprintf(temp,"%i %i %i %i", m_VtxDesc.Normal, m_VtxAttr.NormalFormat, m_VtxAttr.NormalElements, m_VtxAttr.NormalIndex3);
Host_SysMessage("VertexLoader_Normal::GetFunction returned zero!");
}
WriteCall(pFunc);
vtx_decl.num_normals = vtx_attr.NormalElements ? 3 : 1;
vtx_decl.normal_offset[0] = -1;
vtx_decl.normal_offset[1] = -1;
vtx_decl.normal_offset[2] = -1;
vtx_decl.normal_gl_type = VAR_FLOAT;
vtx_decl.normal_gl_size = 3;
vtx_decl.normal_offset[0] = nat_offset;
nat_offset += 12;
if (vtx_attr.NormalElements) {
vtx_decl.normal_offset[1] = nat_offset;
nat_offset += 12;
vtx_decl.normal_offset[2] = nat_offset;
nat_offset += 12;
}
int numNormals = (m_VtxAttr.NormalElements == 1) ? NRM_THREE : NRM_ONE;
m_NativeFmt->m_components |= VB_HAS_NRM0;
if (numNormals == NRM_THREE)
m_NativeFmt->m_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
vtx_decl.color_gl_type = VAR_UNSIGNED_BYTE;
vtx_decl.color_offset[0] = -1;
vtx_decl.color_offset[1] = -1;
for (int i = 0; i < 2; i++) {
m_NativeFmt->m_components |= VB_HAS_COL0 << i;
switch (col[i])
{
case NOT_PRESENT:
m_NativeFmt->m_components &= ~(VB_HAS_COL0 << i);
vtx_decl.color_offset[i] = -1;
break;
case DIRECT:
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_565); break;
case FORMAT_24B_888: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_888); break;
case FORMAT_32B_888x: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_888x); break;
case FORMAT_16B_4444: m_VertexSize += 2; WriteCall(Color_ReadDirect_16b_4444); break;
case FORMAT_24B_6666: m_VertexSize += 3; WriteCall(Color_ReadDirect_24b_6666); break;
case FORMAT_32B_8888: m_VertexSize += 4; WriteCall(Color_ReadDirect_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX8:
m_VertexSize += 1;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex8_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex8_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex8_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex8_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex8_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex8_32b_8888); break;
default: _assert_(0); break;
}
break;
case INDEX16:
m_VertexSize += 2;
switch (m_VtxAttr.color[i].Comp)
{
case FORMAT_16B_565: WriteCall(Color_ReadIndex16_16b_565); break;
case FORMAT_24B_888: WriteCall(Color_ReadIndex16_24b_888); break;
case FORMAT_32B_888x: WriteCall(Color_ReadIndex16_32b_888x); break;
case FORMAT_16B_4444: WriteCall(Color_ReadIndex16_16b_4444); break;
case FORMAT_24B_6666: WriteCall(Color_ReadIndex16_24b_6666); break;
case FORMAT_32B_8888: WriteCall(Color_ReadIndex16_32b_8888); break;
default: _assert_(0); break;
}
break;
}
// Common for the three bottom cases
if (col[i] != NOT_PRESENT) {
vtx_decl.color_offset[i] = nat_offset;
nat_offset += 4;
}
}
// Texture matrix indices (remove if corresponding texture coordinate isn't enabled)
for (int i = 0; i < 8; i++) {
vtx_decl.texcoord_offset[i] = -1;
const int format = m_VtxAttr.texCoord[i].Format;
const int elements = m_VtxAttr.texCoord[i].Elements;
if (tc[i] == NOT_PRESENT) {
m_NativeFmt->m_components &= ~(VB_HAS_UV0 << i);
} else {
_assert_msg_(VIDEO, DIRECT <= tc[i] && tc[i] <= INDEX16, "Invalid texture coordinates!\n(tc[i] = %d)", tc[i]);
_assert_msg_(VIDEO, FORMAT_UBYTE <= format && format <= FORMAT_FLOAT, "Invalid texture coordinates format!\n(format = %d)", format);
_assert_msg_(VIDEO, 0 <= elements && elements <= 1, "Invalid number of texture coordinates elemnts!\n(elements = %d)", elements);
m_NativeFmt->m_components |= VB_HAS_UV0 << i;
WriteCall(VertexLoader_TextCoord::GetFunction(tc[i], format, elements));
m_VertexSize += VertexLoader_TextCoord::GetSize(tc[i], format, elements);
}
if (m_NativeFmt->m_components & (VB_HAS_TEXMTXIDX0 << i)) {
if (tc[i] != NOT_PRESENT) {
// if texmtx is included, texcoord will always be 3 floats, z will be the texmtx index
vtx_decl.texcoord_offset[i] = nat_offset;
vtx_decl.texcoord_gl_type[i] = VAR_FLOAT;
vtx_decl.texcoord_size[i] = 3;
nat_offset += 12;
WriteCall(m_VtxAttr.texCoord[i].Elements ? TexMtx_Write_Float : TexMtx_Write_Float2);
}
else {
m_NativeFmt->m_components |= VB_HAS_UV0 << i; // have to include since using now
vtx_decl.texcoord_offset[i] = nat_offset;
vtx_decl.texcoord_gl_type[i] = VAR_FLOAT;
vtx_decl.texcoord_size[i] = 4;
nat_offset += 16; // still include the texture coordinate, but this time as 6 + 2 bytes
WriteCall(TexMtx_Write_Float4);
}
}
else {
if (tc[i] != NOT_PRESENT) {
vtx_decl.texcoord_offset[i] = nat_offset;
vtx_decl.texcoord_gl_type[i] = VAR_FLOAT;
vtx_decl.texcoord_size[i] = vtx_attr.texCoord[i].Elements ? 2 : 1;
nat_offset += 4 * (vtx_attr.texCoord[i].Elements ? 2 : 1);
}
}
if (tc[i] == NOT_PRESENT) {
// if there's more tex coords later, have to write a dummy call
int j = i + 1;
for (; j < 8; ++j) {
if (tc[j] != NOT_PRESENT) {
WriteCall(VertexLoader_TextCoord::GetDummyFunction()); // important to get indices right!
break;
}
}
// tricky!
if (j == 8 && !((m_NativeFmt->m_components & VB_HAS_TEXMTXIDXALL) & (VB_HAS_TEXMTXIDXALL << (i + 1)))) {
// no more tex coords and tex matrices, so exit loop
break;
}
}
}
if (m_VtxDesc.PosMatIdx) {
WriteCall(PosMtx_Write);
vtx_decl.posmtx_offset = nat_offset;
nat_offset += 4;
} else {
vtx_decl.posmtx_offset = -1;
}
native_stride = nat_offset;
vtx_decl.stride = native_stride;
#ifdef USE_JIT
// End loop here
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)&loop_counter));
SUB(32, MatR(RAX), Imm8(1));
#else
SUB(32, M(&loop_counter), Imm8(1));
#endif
J_CC(CC_NZ, loop_start, true);
ABI_EmitEpilogue(4);
#endif
m_NativeFmt->Initialize(vtx_decl);
}
void VertexLoader::WriteCall(TPipelineFunction func)
{
#ifdef USE_JIT
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)func));
CALLptr(R(RAX));
#else
CALL((void*)func);
#endif
#else
m_PipelineStages[m_numPipelineStages++] = func;
#endif
}
2013-02-26 20:49:00 +01:00
// ARMTODO: This should be done in a better way
#ifndef _M_GENERIC
void VertexLoader::WriteGetVariable(int bits, OpArg dest, void *address)
{
#ifdef USE_JIT
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, dest, MatR(RAX));
#else
MOV(bits, dest, M(address));
#endif
#endif
}
void VertexLoader::WriteSetVariable(int bits, void *address, OpArg value)
{
#ifdef USE_JIT
#ifdef _M_X64
MOV(64, R(RAX), Imm64((u64)address));
MOV(bits, MatR(RAX), value);
#else
MOV(bits, M(address), value);
#endif
#endif
}
2013-02-26 20:49:00 +01:00
#endif
2013-03-04 22:24:39 +01:00
int VertexLoader::SetupRunVertices(int vtx_attr_group, int primitive, int const count)
{
m_numLoadedVertices += count;
// Flush if our vertex format is different from the currently set.
if (g_nativeVertexFmt != NULL && g_nativeVertexFmt != m_NativeFmt)
{
// We really must flush here. It's possible that the native representations
// of the two vtx formats are the same, but we have no way to easily check that
// now.
VertexManager::Flush();
// Also move the Set() here?
}
g_nativeVertexFmt = m_NativeFmt;
if (bpmem.genMode.cullmode == 3 && primitive < 5)
{
// if cull mode is none, ignore triangles and quads
DataSkip(count * m_VertexSize);
2013-03-04 22:24:39 +01:00
return 0;
}
m_NativeFmt->EnableComponents(m_NativeFmt->m_components);
// Load position and texcoord scale factors.
m_VtxAttr.PosFrac = g_VtxAttr[vtx_attr_group].g0.PosFrac;
m_VtxAttr.texCoord[0].Frac = g_VtxAttr[vtx_attr_group].g0.Tex0Frac;
m_VtxAttr.texCoord[1].Frac = g_VtxAttr[vtx_attr_group].g1.Tex1Frac;
m_VtxAttr.texCoord[2].Frac = g_VtxAttr[vtx_attr_group].g1.Tex2Frac;
m_VtxAttr.texCoord[3].Frac = g_VtxAttr[vtx_attr_group].g1.Tex3Frac;
m_VtxAttr.texCoord[4].Frac = g_VtxAttr[vtx_attr_group].g2.Tex4Frac;
m_VtxAttr.texCoord[5].Frac = g_VtxAttr[vtx_attr_group].g2.Tex5Frac;
m_VtxAttr.texCoord[6].Frac = g_VtxAttr[vtx_attr_group].g2.Tex6Frac;
m_VtxAttr.texCoord[7].Frac = g_VtxAttr[vtx_attr_group].g2.Tex7Frac;
pVtxAttr = &m_VtxAttr;
posScale = fractionTable[m_VtxAttr.PosFrac];
if (m_NativeFmt->m_components & VB_HAS_UVALL)
for (int i = 0; i < 8; i++)
tcScale[i] = fractionTable[m_VtxAttr.texCoord[i].Frac];
for (int i = 0; i < 2; i++)
colElements[i] = m_VtxAttr.color[i].Elements;
VertexManager::PrepareForAdditionalData(primitive, count, native_stride);
2013-03-04 22:24:39 +01:00
return count;
}
void VertexLoader::RunVertices(int vtx_attr_group, int primitive, int const count)
{
auto const new_count = SetupRunVertices(vtx_attr_group, primitive, count);
ConvertVertices(new_count);
VertexManager::AddVertices(primitive, new_count);
}
void VertexLoader::ConvertVertices ( int count )
{
#ifdef USE_JIT
if (count > 0) {
loop_counter = count;
((void (*)())(void*)m_compiledCode)();
}
#else
for (int s = 0; s < count; s++)
{
tcIndex = 0;
colIndex = 0;
s_texmtxwrite = s_texmtxread = 0;
for (int i = 0; i < m_numPipelineStages; i++)
m_PipelineStages[i]();
PRIM_LOG("\n");
}
#endif
}
void VertexLoader::RunCompiledVertices(int vtx_attr_group, int primitive, int const count, u8* Data)
{
2013-03-04 22:24:39 +01:00
auto const new_count = SetupRunVertices(vtx_attr_group, primitive, count);
2013-03-04 22:24:39 +01:00
memcpy_gc(VertexManager::s_pCurBufferPointer, Data, native_stride * new_count);
VertexManager::s_pCurBufferPointer += native_stride * new_count;
DataSkip(new_count * m_VertexSize);
2013-03-04 22:24:39 +01:00
VertexManager::AddVertices(primitive, new_count);
}
void VertexLoader::SetVAT(u32 _group0, u32 _group1, u32 _group2)
{
VAT vat;
vat.g0.Hex = _group0;
vat.g1.Hex = _group1;
vat.g2.Hex = _group2;
m_VtxAttr.PosElements = vat.g0.PosElements;
m_VtxAttr.PosFormat = vat.g0.PosFormat;
m_VtxAttr.PosFrac = vat.g0.PosFrac;
m_VtxAttr.NormalElements = vat.g0.NormalElements;
m_VtxAttr.NormalFormat = vat.g0.NormalFormat;
m_VtxAttr.color[0].Elements = vat.g0.Color0Elements;
m_VtxAttr.color[0].Comp = vat.g0.Color0Comp;
m_VtxAttr.color[1].Elements = vat.g0.Color1Elements;
m_VtxAttr.color[1].Comp = vat.g0.Color1Comp;
m_VtxAttr.texCoord[0].Elements = vat.g0.Tex0CoordElements;
m_VtxAttr.texCoord[0].Format = vat.g0.Tex0CoordFormat;
m_VtxAttr.texCoord[0].Frac = vat.g0.Tex0Frac;
m_VtxAttr.ByteDequant = vat.g0.ByteDequant;
m_VtxAttr.NormalIndex3 = vat.g0.NormalIndex3;
m_VtxAttr.texCoord[1].Elements = vat.g1.Tex1CoordElements;
m_VtxAttr.texCoord[1].Format = vat.g1.Tex1CoordFormat;
m_VtxAttr.texCoord[1].Frac = vat.g1.Tex1Frac;
m_VtxAttr.texCoord[2].Elements = vat.g1.Tex2CoordElements;
m_VtxAttr.texCoord[2].Format = vat.g1.Tex2CoordFormat;
m_VtxAttr.texCoord[2].Frac = vat.g1.Tex2Frac;
m_VtxAttr.texCoord[3].Elements = vat.g1.Tex3CoordElements;
m_VtxAttr.texCoord[3].Format = vat.g1.Tex3CoordFormat;
m_VtxAttr.texCoord[3].Frac = vat.g1.Tex3Frac;
m_VtxAttr.texCoord[4].Elements = vat.g1.Tex4CoordElements;
m_VtxAttr.texCoord[4].Format = vat.g1.Tex4CoordFormat;
m_VtxAttr.texCoord[4].Frac = vat.g2.Tex4Frac;
m_VtxAttr.texCoord[5].Elements = vat.g2.Tex5CoordElements;
m_VtxAttr.texCoord[5].Format = vat.g2.Tex5CoordFormat;
m_VtxAttr.texCoord[5].Frac = vat.g2.Tex5Frac;
m_VtxAttr.texCoord[6].Elements = vat.g2.Tex6CoordElements;
m_VtxAttr.texCoord[6].Format = vat.g2.Tex6CoordFormat;
m_VtxAttr.texCoord[6].Frac = vat.g2.Tex6Frac;
m_VtxAttr.texCoord[7].Elements = vat.g2.Tex7CoordElements;
m_VtxAttr.texCoord[7].Format = vat.g2.Tex7CoordFormat;
m_VtxAttr.texCoord[7].Frac = vat.g2.Tex7Frac;
};
void VertexLoader::AppendToString(std::string *dest) const
{
dest->reserve(250);
static const char *posMode[4] = {
"Inv",
"Dir",
"I8",
"I16",
};
static const char *posFormats[5] = {
"u8", "s8", "u16", "s16", "flt",
};
static const char *colorFormat[8] = {
"565",
"888",
"888x",
"4444",
"6666",
"8888",
"Inv",
"Inv",
};
dest->append(StringFromFormat("%ib skin: %i P: %i %s-%s ",
m_VertexSize, m_VtxDesc.PosMatIdx,
m_VtxAttr.PosElements ? 3 : 2, posMode[m_VtxDesc.Position], posFormats[m_VtxAttr.PosFormat]));
if (m_VtxDesc.Normal) {
dest->append(StringFromFormat("Nrm: %i %s-%s ",
m_VtxAttr.NormalElements, posMode[m_VtxDesc.Normal], posFormats[m_VtxAttr.NormalFormat]));
}
u32 color_mode[2] = {m_VtxDesc.Color0, m_VtxDesc.Color1};
for (int i = 0; i < 2; i++)
{
if (color_mode[i])
{
dest->append(StringFromFormat("C%i: %i %s-%s ", i, m_VtxAttr.color[i].Elements, posMode[color_mode[i]], colorFormat[m_VtxAttr.color[i].Comp]));
}
}
u32 tex_mode[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord
};
for (int i = 0; i < 8; i++)
{
if (tex_mode[i])
{
dest->append(StringFromFormat("T%i: %i %s-%s ",
i, m_VtxAttr.texCoord[i].Elements, posMode[tex_mode[i]], posFormats[m_VtxAttr.texCoord[i].Format]));
}
}
dest->append(StringFromFormat(" - %i v\n", m_numLoadedVertices));
}