dolphin/Source/Core/VideoCommon/Src/VertexShaderManager.cpp

619 lines
20 KiB
C++
Raw Normal View History

// Copyright (C) 2003 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "VideoConfig.h"
#include "MathUtil.h"
#include <cmath>
#include <sstream>
#include "Statistics.h"
#include "VertexShaderGen.h"
#include "VertexShaderManager.h"
#include "BPMemory.h"
#include "CPMemory.h"
#include "XFMemory.h"
#include "VideoCommon.h"
#include "VertexManagerBase.h"
#include "RenderBase.h"
float GC_ALIGNED16(g_fProjectionMatrix[16]);
// track changes
static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
static int nMaterialsChanged;
static int nTransformMatricesChanged[2]; // min,max
static int nNormalMatricesChanged[2]; // min,max
static int nPostTransformMatricesChanged[2]; // min,max
static int nLightsChanged[2]; // min,max
static Matrix44 s_viewportCorrection;
static Matrix33 s_viewRotationMatrix;
static Matrix33 s_viewInvRotationMatrix;
static float s_fViewTranslationVector[3];
static float s_fViewRotation[2];
void UpdateViewport(Matrix44& vpCorrection);
inline void SetVSConstant4f(unsigned int const_number, float f1, float f2, float f3, float f4)
{
g_renderer->SetVSConstant4f(const_number, f1, f2, f3, f4);
}
inline void SetVSConstant4fv(unsigned int const_number, const float *f)
{
g_renderer->SetVSConstant4fv(const_number, f);
}
inline void SetMultiVSConstant3fv(unsigned int const_number, unsigned int count, const float *f)
{
g_renderer->SetMultiVSConstant3fv(const_number, count, f);
}
inline void SetMultiVSConstant4fv(unsigned int const_number, unsigned int count, const float *f)
{
g_renderer->SetMultiVSConstant4fv(const_number, count, f);
}
namespace
{
// Control Variables
static ProjectionHack g_ProjHack1;
static ProjectionHack g_ProjHack2;
static bool g_ProjHack3;
} // Namespace
float PHackValue(std::string sValue)
{
float f = 0;
bool fp = false;
const char *cStr = sValue.c_str();
char *c = new char[strlen(cStr)+1];
std::istringstream sTof("");
for (unsigned int i=0; i<=strlen(cStr); ++i)
{
if (i == 20)
{
c[i] = '\0';
break;
}
c[i] = (cStr[i] == ',') ? '.' : *(cStr+i);
if (c[i] == '.')
fp = true;
}
cStr = c;
sTof.str(cStr);
sTof >> f;
if (!fp) f /= 0xF4240;
delete [] c;
return f;
}
void UpdateProjectionHack(int iPhackvalue[], std::string sPhackvalue[])
{
float fhackvalue1 = 0, fhackvalue2 = 0;
float fhacksign1 = 1.0, fhacksign2 = 1.0;
bool bProjHack3 = false;
const char *sTemp[2];
if (iPhackvalue[0] == 1)
{
NOTICE_LOG(VIDEO, "\t\t--- Ortographic Projection Hack ON ---");
fhacksign1 *= (iPhackvalue[1] == 1) ? -1.0f : fhacksign1;
sTemp[0] = (iPhackvalue[1] == 1) ? " * (-1)" : "";
fhacksign2 *= (iPhackvalue[2] == 1) ? -1.0f : fhacksign2;
sTemp[1] = (iPhackvalue[2] == 1) ? " * (-1)" : "";
fhackvalue1 = PHackValue(sPhackvalue[0]);
NOTICE_LOG(VIDEO, "- zNear Correction = (%f + zNear)%s", fhackvalue1, sTemp[0]);
fhackvalue2 = PHackValue(sPhackvalue[1]);
NOTICE_LOG(VIDEO, "- zFar Correction = (%f + zFar)%s", fhackvalue2, sTemp[1]);
sTemp[0] = "DISABLED";
bProjHack3 = (iPhackvalue[3] == 1) ? true : bProjHack3;
if (bProjHack3)
sTemp[0] = "ENABLED";
NOTICE_LOG(VIDEO, "- Extra Parameter: %s", sTemp[0]);
}
// Set the projections hacks
g_ProjHack1 = ProjectionHack(fhacksign1, fhackvalue1);
g_ProjHack2 = ProjectionHack(fhacksign2, fhackvalue2);
g_ProjHack3 = bProjHack3;
}
void VertexShaderManager::Init()
{
Dirty();
memset(&xfregs, 0, sizeof(xfregs));
memset(xfmem, 0, sizeof(xfmem));
ResetView();
2012-01-02 11:20:22 +01:00
// TODO: should these go inside ResetView()?
Matrix44::LoadIdentity(s_viewportCorrection);
memset(g_fProjectionMatrix, 0, sizeof(g_fProjectionMatrix));
for (int i = 0; i < 4; ++i)
g_fProjectionMatrix[i*5] = 1.0f;
}
void VertexShaderManager::Shutdown()
{
}
void VertexShaderManager::Dirty()
{
nTransformMatricesChanged[0] = 0; nTransformMatricesChanged[1] = 256;
nNormalMatricesChanged[0] = 0; nNormalMatricesChanged[1] = 96;
nPostTransformMatricesChanged[0] = 0; nPostTransformMatricesChanged[1] = 256;
nLightsChanged[0] = 0; nLightsChanged[1] = 0x80;
bPosNormalMatrixChanged = true;
bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
bProjectionChanged = true;
bPosNormalMatrixChanged = bTexMatricesChanged[0] = bTexMatricesChanged[1] = true;
nMaterialsChanged = 15;
}
// Syncs the shader constant buffers with xfmem
// TODO: A cleaner way to control the matricies without making a mess in the parameters field
void VertexShaderManager::SetConstants()
{
if (nTransformMatricesChanged[0] >= 0)
{
int startn = nTransformMatricesChanged[0] / 4;
int endn = (nTransformMatricesChanged[1] + 3) / 4;
const float* pstart = (const float*)&xfmem[startn * 4];
SetMultiVSConstant4fv(C_TRANSFORMMATRICES + startn, endn - startn, pstart);
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
}
if (nNormalMatricesChanged[0] >= 0)
{
int startn = nNormalMatricesChanged[0] / 3;
int endn = (nNormalMatricesChanged[1] + 2) / 3;
const float *pnstart = (const float*)&xfmem[XFMEM_NORMALMATRICES+3*startn];
SetMultiVSConstant3fv(C_NORMALMATRICES + startn, endn - startn, pnstart);
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
}
if (nPostTransformMatricesChanged[0] >= 0)
{
int startn = nPostTransformMatricesChanged[0] / 4;
int endn = (nPostTransformMatricesChanged[1] + 3 ) / 4;
const float* pstart = (const float*)&xfmem[XFMEM_POSTMATRICES + startn * 4];
SetMultiVSConstant4fv(C_POSTTRANSFORMMATRICES + startn, endn - startn, pstart);
}
if (nLightsChanged[0] >= 0)
{
// lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
int istart = nLightsChanged[0] / 0x10;
int iend = (nLightsChanged[1] + 15) / 0x10;
const float* xfmemptr = (const float*)&xfmem[0x10 * istart + XFMEM_LIGHTS];
for (int i = istart; i < iend; ++i)
{
u32 color = *(const u32*)(xfmemptr + 3);
float NormalizationCoef = 1 / 255.0f;
SetVSConstant4f(C_LIGHTS + 5 * i,
((color >> 24) & 0xFF) * NormalizationCoef,
((color >> 16) & 0xFF) * NormalizationCoef,
((color >> 8) & 0xFF) * NormalizationCoef,
((color) & 0xFF) * NormalizationCoef);
xfmemptr += 4;
for (int j = 0; j < 4; ++j, xfmemptr += 3)
{
if (j == 1 &&
fabs(xfmemptr[0]) < 0.00001f &&
fabs(xfmemptr[1]) < 0.00001f &&
fabs(xfmemptr[2]) < 0.00001f)
{
// dist attenuation, make sure not equal to 0!!!
SetVSConstant4f(C_LIGHTS+5*i+j+1, 0.00001f, xfmemptr[1], xfmemptr[2], 0);
}
else
SetVSConstant4fv(C_LIGHTS+5*i+j+1, xfmemptr);
}
}
nLightsChanged[0] = nLightsChanged[1] = -1;
}
if (nMaterialsChanged)
{
float GC_ALIGNED16(material[4]);
float NormalizationCoef = 1 / 255.0f;
for (int i = 0; i < 4; ++i)
{
if (nMaterialsChanged & (1 << i))
{
u32 data = *(xfregs.ambColor + i);
material[0] = ((data >> 24) & 0xFF) * NormalizationCoef;
material[1] = ((data >> 16) & 0xFF) * NormalizationCoef;
material[2] = ((data >> 8) & 0xFF) * NormalizationCoef;
material[3] = ( data & 0xFF) * NormalizationCoef;
SetVSConstant4fv(C_MATERIALS + i, material);
}
}
nMaterialsChanged = 0;
}
if (bPosNormalMatrixChanged)
{
bPosNormalMatrixChanged = false;
const float *pos = (const float *)xfmem + MatrixIndexA.PosNormalMtxIdx * 4;
const float *norm = (const float *)xfmem + XFMEM_NORMALMATRICES + 3 * (MatrixIndexA.PosNormalMtxIdx & 31);
SetMultiVSConstant4fv(C_POSNORMALMATRIX, 3, pos);
SetMultiVSConstant3fv(C_POSNORMALMATRIX + 3, 3, norm);
}
if (bTexMatricesChanged[0])
{
bTexMatricesChanged[0] = false;
const float *fptrs[] =
{
(const float *)xfmem + MatrixIndexA.Tex0MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex1MtxIdx * 4,
(const float *)xfmem + MatrixIndexA.Tex2MtxIdx * 4, (const float *)xfmem + MatrixIndexA.Tex3MtxIdx * 4
};
for (int i = 0; i < 4; ++i)
{
SetMultiVSConstant4fv(C_TEXMATRICES + 3 * i, 3, fptrs[i]);
}
}
if (bTexMatricesChanged[1])
{
bTexMatricesChanged[1] = false;
const float *fptrs[] = {
(const float *)xfmem + MatrixIndexB.Tex4MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex5MtxIdx * 4,
(const float *)xfmem + MatrixIndexB.Tex6MtxIdx * 4, (const float *)xfmem + MatrixIndexB.Tex7MtxIdx * 4
};
for (int i = 0; i < 4; ++i)
{
SetMultiVSConstant4fv(C_TEXMATRICES+3 * i + 12, 3, fptrs[i]);
}
}
if (bViewportChanged)
{
bViewportChanged = false;
SetVSConstant4f(C_DEPTHPARAMS,
xfregs.viewport.farZ / 16777216.0f,
xfregs.viewport.zRange / 16777216.0f,
-1.f / (float)g_renderer->EFBToScaledX((int)ceil(2.0f * xfregs.viewport.wd)),
1.f / (float)g_renderer->EFBToScaledY((int)ceil(-2.0f * xfregs.viewport.ht)));
// This is so implementation-dependent that we can't have it here.
UpdateViewport(s_viewportCorrection);
bProjectionChanged = true;
}
if (bProjectionChanged)
{
bProjectionChanged = false;
if (xfregs.rawProjection[6] == 0)
{
// Perspective
g_fProjectionMatrix[0] = xfregs.rawProjection[0] * g_ActiveConfig.fAspectRatioHackW;
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = xfregs.rawProjection[1];
g_fProjectionMatrix[3] = 0.0f;
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = xfregs.rawProjection[2] * g_ActiveConfig.fAspectRatioHackH;
g_fProjectionMatrix[6] = xfregs.rawProjection[3];
g_fProjectionMatrix[7] = 0.0f;
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = xfregs.rawProjection[4];
g_fProjectionMatrix[11] = xfregs.rawProjection[5];
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
// donkopunchstania: GC GPU rounds differently?
// -(1 + epsilon) so objects are clipped as they are on the real HW
g_fProjectionMatrix[14] = -1.00000011921f;
g_fProjectionMatrix[15] = 0.0f;
SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]);
}
else
{
// Orthographic Projection
g_fProjectionMatrix[0] = xfregs.rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = 0.0f;
g_fProjectionMatrix[3] = xfregs.rawProjection[1];
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = xfregs.rawProjection[2];
g_fProjectionMatrix[6] = 0.0f;
g_fProjectionMatrix[7] = xfregs.rawProjection[3];
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = (g_ProjHack1.value + xfregs.rawProjection[4]) * ((g_ProjHack1.sign == 0) ? 1.0f : g_ProjHack1.sign);
g_fProjectionMatrix[11] = (g_ProjHack2.value + xfregs.rawProjection[5]) * ((g_ProjHack2.sign == 0) ? 1.0f : g_ProjHack2.sign);
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
/*
projection hack for metroid other m...attempt to remove black projection layer from cut scenes.
g_fProjectionMatrix[15] = 1.0f was the default setting before
this hack was added...setting g_fProjectionMatrix[14] to -1 might make the hack more stable, needs more testing.
Only works for OGL and DX9...this is not helping DX11
*/
g_fProjectionMatrix[14] = 0.0f;
g_fProjectionMatrix[15] = (g_ProjHack3 && xfregs.rawProjection[0] == 2.0f ? 0.0f : 1.0f); //causes either the efb copy or bloom layer not to show if proj hack enabled
SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]);
SETSTAT_FT(stats.proj_0, xfregs.rawProjection[0]);
SETSTAT_FT(stats.proj_1, xfregs.rawProjection[1]);
SETSTAT_FT(stats.proj_2, xfregs.rawProjection[2]);
SETSTAT_FT(stats.proj_3, xfregs.rawProjection[3]);
SETSTAT_FT(stats.proj_4, xfregs.rawProjection[4]);
SETSTAT_FT(stats.proj_5, xfregs.rawProjection[5]);
SETSTAT_FT(stats.proj_6, xfregs.rawProjection[6]);
}
PRIM_LOG("Projection: %f %f %f %f %f %f\n", xfregs.rawProjection[0], xfregs.rawProjection[1], xfregs.rawProjection[2], xfregs.rawProjection[3], xfregs.rawProjection[4], xfregs.rawProjection[5]);
if ((g_ActiveConfig.bFreeLook || g_ActiveConfig.bAnaglyphStereo ) && xfregs.rawProjection[6] == 0)
{
Matrix44 mtxA;
Matrix44 mtxB;
Matrix44 viewMtx;
Matrix44::Translate(mtxA, s_fViewTranslationVector);
Matrix44::LoadMatrix33(mtxB, s_viewRotationMatrix);
Matrix44::Multiply(mtxB, mtxA, viewMtx); // view = rotation x translation
Matrix44::Set(mtxB, g_fProjectionMatrix);
Matrix44::Multiply(mtxB, viewMtx, mtxA); // mtxA = projection x view
Matrix44::Multiply(s_viewportCorrection, mtxA, mtxB); // mtxB = viewportCorrection x mtxA
SetMultiVSConstant4fv(C_PROJECTION, 4, mtxB.data);
}
else
{
Matrix44 projMtx;
Matrix44::Set(projMtx, g_fProjectionMatrix);
Matrix44 correctedMtx;
Matrix44::Multiply(s_viewportCorrection, projMtx, correctedMtx);
SetMultiVSConstant4fv(C_PROJECTION, 4, correctedMtx.data);
}
}
}
void VertexShaderManager::InvalidateXFRange(int start, int end)
{
if (((u32)start >= (u32)MatrixIndexA.PosNormalMtxIdx * 4 &&
(u32)start < (u32)MatrixIndexA.PosNormalMtxIdx * 4 + 12) ||
((u32)start >= XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31) * 3 &&
(u32)start < XFMEM_NORMALMATRICES + ((u32)MatrixIndexA.PosNormalMtxIdx & 31) * 3 + 9)) {
bPosNormalMatrixChanged = true;
}
if (((u32)start >= (u32)MatrixIndexA.Tex0MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex0MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex1MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex1MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex2MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex2MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexA.Tex3MtxIdx*4 && (u32)start < (u32)MatrixIndexA.Tex3MtxIdx*4+12)) {
bTexMatricesChanged[0] = true;
}
if (((u32)start >= (u32)MatrixIndexB.Tex4MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex4MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex5MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex5MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex6MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex6MtxIdx*4+12) ||
((u32)start >= (u32)MatrixIndexB.Tex7MtxIdx*4 && (u32)start < (u32)MatrixIndexB.Tex7MtxIdx*4+12)) {
bTexMatricesChanged[1] = true;
}
if (start < XFMEM_POSMATRICES_END)
{
if (nTransformMatricesChanged[0] == -1)
{
nTransformMatricesChanged[0] = start;
nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
}
else
{
if (nTransformMatricesChanged[0] > start) nTransformMatricesChanged[0] = start;
if (nTransformMatricesChanged[1] < end) nTransformMatricesChanged[1] = end>XFMEM_POSMATRICES_END?XFMEM_POSMATRICES_END:end;
}
}
if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES)
{
int _start = start < XFMEM_NORMALMATRICES ? 0 : start-XFMEM_NORMALMATRICES;
int _end = end < XFMEM_NORMALMATRICES_END ? end-XFMEM_NORMALMATRICES : XFMEM_NORMALMATRICES_END-XFMEM_NORMALMATRICES;
if (nNormalMatricesChanged[0] == -1)
{
nNormalMatricesChanged[0] = _start;
nNormalMatricesChanged[1] = _end;
}
else
{
if (nNormalMatricesChanged[0] > _start) nNormalMatricesChanged[0] = _start;
if (nNormalMatricesChanged[1] < _end) nNormalMatricesChanged[1] = _end;
}
}
if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES)
{
int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start-XFMEM_POSTMATRICES;
int _end = end < XFMEM_POSTMATRICES_END ? end-XFMEM_POSTMATRICES : XFMEM_POSTMATRICES_END-XFMEM_POSTMATRICES;
if (nPostTransformMatricesChanged[0] == -1)
{
nPostTransformMatricesChanged[0] = _start;
nPostTransformMatricesChanged[1] = _end;
}
else
{
if (nPostTransformMatricesChanged[0] > _start) nPostTransformMatricesChanged[0] = _start;
if (nPostTransformMatricesChanged[1] < _end) nPostTransformMatricesChanged[1] = _end;
}
}
if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS)
{
int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start-XFMEM_LIGHTS;
int _end = end < XFMEM_LIGHTS_END ? end-XFMEM_LIGHTS : XFMEM_LIGHTS_END-XFMEM_LIGHTS;
if (nLightsChanged[0] == -1 )
{
nLightsChanged[0] = _start;
nLightsChanged[1] = _end;
}
else
{
if (nLightsChanged[0] > _start) nLightsChanged[0] = _start;
if (nLightsChanged[1] < _end) nLightsChanged[1] = _end;
}
}
}
void VertexShaderManager::SetTexMatrixChangedA(u32 Value)
{
if (MatrixIndexA.Hex != Value)
{
VertexManager::Flush();
if (MatrixIndexA.PosNormalMtxIdx != (Value&0x3f))
bPosNormalMatrixChanged = true;
bTexMatricesChanged[0] = true;
MatrixIndexA.Hex = Value;
}
}
void VertexShaderManager::SetTexMatrixChangedB(u32 Value)
{
if (MatrixIndexB.Hex != Value)
{
VertexManager::Flush();
bTexMatricesChanged[1] = true;
MatrixIndexB.Hex = Value;
}
}
void VertexShaderManager::SetViewportChanged()
{
bViewportChanged = true;
}
void VertexShaderManager::SetProjectionChanged()
{
bProjectionChanged = true;
}
void VertexShaderManager::SetMaterialColorChanged(int index)
{
nMaterialsChanged |= (1 << index);
}
void VertexShaderManager::TranslateView(float x, float y)
{
float result[3];
float vector[3] = { x,0,y };
Matrix33::Multiply(s_viewInvRotationMatrix, vector, result);
for (int i = 0; i < 3; i++)
s_fViewTranslationVector[i] += result[i];
bProjectionChanged = true;
}
void VertexShaderManager::RotateView(float x, float y)
{
s_fViewRotation[0] += x;
s_fViewRotation[1] += y;
Matrix33 mx;
Matrix33 my;
Matrix33::RotateX(mx, s_fViewRotation[1]);
Matrix33::RotateY(my, s_fViewRotation[0]);
Matrix33::Multiply(mx, my, s_viewRotationMatrix);
// reverse rotation
Matrix33::RotateX(mx, -s_fViewRotation[1]);
Matrix33::RotateY(my, -s_fViewRotation[0]);
Matrix33::Multiply(my, mx, s_viewInvRotationMatrix);
bProjectionChanged = true;
}
void VertexShaderManager::ResetView()
{
memset(s_fViewTranslationVector, 0, sizeof(s_fViewTranslationVector));
Matrix33::LoadIdentity(s_viewRotationMatrix);
Matrix33::LoadIdentity(s_viewInvRotationMatrix);
s_fViewRotation[0] = s_fViewRotation[1] = 0.0f;
bProjectionChanged = true;
}