dolphin/Source/Core/Common/Src/x64Emitter.cpp

1420 lines
41 KiB
C++
Raw Normal View History

// Copyright (C) 2003-2008 Dolphin Project.
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, version 2.0.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License 2.0 for more details.
// A copy of the GPL 2.0 should have been included with the program.
// If not, see http://www.gnu.org/licenses/
// Official SVN repository and contact information can be found at
// http://code.google.com/p/dolphin-emu/
#include "Common.h"
#include "x64Emitter.h"
#include "ABI.h"
#include "CPUDetect.h"
namespace Gen
{
static u8 *code;
static bool mode32 = false;
static bool enableBranchHints = false;
void SetCodePtr(u8 *ptr)
{
code = ptr;
}
const u8 *GetCodePtr()
{
return code;
}
u8 *GetWritableCodePtr()
{
return code;
}
void ReserveCodeSpace(int bytes)
{
for (int i = 0; i < bytes; i++)
*code++ = 0xCC;
}
const u8 *AlignCode4()
{
int c = int((u64)code & 3);
if (c)
ReserveCodeSpace(4-c);
return code;
}
const u8 *AlignCode16()
{
int c = int((u64)code & 15);
if (c)
ReserveCodeSpace(16-c);
return code;
}
const u8 *AlignCodePage()
{
int c = int((u64)code & 4095);
if (c)
ReserveCodeSpace(4096-c);
return code;
}
inline void Write8(u8 value)
{
*code++ = value;
}
inline void Write16(u16 value)
{
*(u16*)code = value;
code += 2;
}
inline void Write32(u32 value)
{
*(u32*)code = value;
code += 4;
}
inline void Write64(u64 value)
{
_dbg_assert_msg_(DYNA_REC,!mode32,"!mode32");
*(u64*)code = value;
code += 8;
}
void WriteModRM( int mod, int rm, int reg )
{
Write8((u8)((mod << 6) | ((rm & 7) << 3) | (reg & 7)));
}
void WriteSIB(int scale, int index, int base)
{
Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
}
void OpArg::WriteRex(bool op64, int customOp) const
{
#ifdef _M_X64
u8 op = 0x40;
if (customOp == -1) customOp = operandReg;
if (op64) op |= 8;
if (customOp >> 3) op |= 4;
if (indexReg >> 3) op |= 2;
if (offsetOrBaseReg >> 3) op |= 1; //TODO investigate if this is dangerous
_dbg_assert_msg_(DYNA_REC,!mode32 || op == 0x40,"!mode32");
if (op != 0x40)
Write8(op);
#else
_dbg_assert_(DYNA_REC,(operandReg >> 3) == 0);
_dbg_assert_(DYNA_REC,(indexReg >> 3) == 0);
_dbg_assert_(DYNA_REC,(offsetOrBaseReg >> 3) == 0);
#endif
}
void OpArg::WriteRest(int extraBytes, X64Reg operandReg) const
{
if (operandReg == 0xff)
operandReg = (X64Reg)this->operandReg;
int mod = 0;
int ireg = indexReg;
bool SIB = false;
int offsetOrBaseReg = this->offsetOrBaseReg;
if (scale == SCALE_RIP) //Also, on 32-bit, just an immediate address
{
_dbg_assert_msg_(DYNA_REC,!mode32,"!mode32");
// Oh, RIP addressing.
offsetOrBaseReg = 5;
WriteModRM(0, operandReg&7, 5);
//TODO : add some checks
#ifdef _M_X64
u64 ripAddr = (u64)code + 4 + extraBytes;
s32 offs = (s32)((s64)offset - (s64)ripAddr);
Write32((u32)offs);
#else
Write32((u32)offset);
#endif
return;
}
if (scale == 0)
{
// Oh, no memory, Just a reg.
mod = 3; //11
}
else if (scale >= 1)
{
//Ah good, no scaling.
if (scale == SCALE_ATREG && !((offsetOrBaseReg&7) == 4 || (offsetOrBaseReg&7) == 5))
{
//Okay, we're good. No SIB necessary.
int ioff = (int)offset;
if (ioff == 0)
{
mod = 0;
}
else if (ioff<-128 || ioff>127)
{
mod = 2; //32-bit displacement
}
else
{
mod = 1; //8-bit displacement
}
}
else //if (scale != SCALE_ATREG)
{
if ((offsetOrBaseReg & 7) == 4) //this would occupy the SIB encoding :(
{
//So we have to fake it with SIB encoding :(
SIB = true;
}
if (scale >= SCALE_1 && scale < SCALE_ATREG)
{
SIB = true;
}
if (scale == SCALE_ATREG && offsetOrBaseReg == 4)
{
SIB = true;
ireg = 4;
}
//Okay, we're fine. Just disp encoding.
//We need displacement. Which size?
int ioff = (int)(s64)offset;
if (ioff < -128 || ioff > 127)
{
mod = 2; //32-bit displacement
}
else
{
mod = 1; //8-bit displacement
}
}
}
// Okay. Time to do the actual writing
// ModRM byte:
int oreg = offsetOrBaseReg;
if (SIB)
oreg = 4;
// TODO(ector): WTF is this if about? I don't remember writing it :-)
//if (RIP)
// oreg = 5;
WriteModRM(mod, operandReg&7, oreg&7);
if (SIB)
{
//SIB byte
int ss;
switch (scale)
{
case 0: offsetOrBaseReg = 4; ss = 0; break; //RSP
case 1: ss = 0; break;
case 2: ss = 1; break;
case 4: ss = 2; break;
case 8: ss = 3; break;
case SCALE_ATREG: ss = 0; break;
default: _assert_msg_(DYNA_REC, 0, "Invalid scale for SIB byte"); ss = 0; break;
}
Write8((u8)((ss << 6) | ((ireg&7)<<3) | (offsetOrBaseReg&7)));
}
if (mod == 1) //8-bit disp
{
Write8((u8)(s8)(s32)offset);
}
else if (mod == 2) //32-bit disp
{
Write32((u32)offset);
}
}
// W = operand extended width (1 if 64-bit)
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
void Rex(int w, int r, int x, int b)
{
w = w ? 1 : 0;
r = r ? 1 : 0;
x = x ? 1 : 0;
b = b ? 1 : 0;
u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
if (rx != 0x40)
Write8(rx);
}
void JMP(const u8 *addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
{
s32 distance = (s32)(fn - ((u64)code + 2)); //TODO - sanity check
//8 bits will do
Write8(0xEB);
Write8((u8)(s8)distance);
}
else
{
s32 distance = (s32)(fn - ((u64)code + 5)); //TODO - sanity check
Write8(0xE9);
Write32((u32)(s32)distance);
}
}
void JMPptr(const OpArg &arg2)
{
OpArg arg = arg2;
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "JMPptr - Imm argument");
arg.operandReg = 4;
arg.WriteRex(false);
Write8(0xFF);
arg.WriteRest();
}
//Can be used to trap other processors, before overwriting their code
// not used in dolphin
void JMPself()
{
Write8(0xEB);
Write8(0xFE);
}
void CALLptr(OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "CALLptr - Imm argument");
arg.operandReg = 2;
arg.WriteRex(false);
Write8(0xFF);
arg.WriteRest();
}
inline s64 myabs(s64 a) {
if (a < 0) return -a;
return a;
}
void CALL(void *fnptr)
{
s64 fn = (s64)fnptr;
s64 c = (s64)code;
if (myabs(fn - c) >= 0x80000000ULL) {
PanicAlert("CALL out of range (%p calls %p)", c, fn);
}
s32 distance = (s32)(fn - ((u64)code + 5));
Write8(0xE8);
Write32(distance);
}
void x86SetJ8(u8 *j8)
{
//TODO fix
u64 jump = (code - (u8*)j8) - 1;
if (jump > 0x7f)
_assert_msg_(DYNA_REC, 0, "j8 greater than 0x7f!!");
*j8 = (u8)jump;
}
FixupBranch J(bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 5 : 2);
if (!force5bytes)
{
//8 bits will do
Write8(0xEB);
Write8(0);
}
else
{
Write8(0xE9);
Write32(0);
}
return branch;
}
// These are to be used with Jcc only.
// Found in intel manual 2A
// These do not really make a difference for any current X86 CPU,
// but are provided here for future use
void HINT_NOT_TAKEN() { if (enableBranchHints) Write8(0x2E); }
void HINT_TAKEN() { if (enableBranchHints) Write8(0x3E); }
FixupBranch J_CC(CCFlags conditionCode, bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 5 : 2);
if (!force5bytes)
{
//8 bits will do
Write8(0x70 + conditionCode);
Write8(0);
}
else
{
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32(0);
}
return branch;
}
void J_CC(CCFlags conditionCode, const u8 * addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
{
s32 distance = (s32)(fn - ((u64)code + 2)); //TODO - sanity check
//8 bits will do
Write8(0x70 + conditionCode);
Write8((u8)(s8)distance);
}
else
{
s32 distance = (s32)(fn - ((u64)code + 6)); //TODO - sanity check
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32((u32)(s32)distance);
}
}
void SetJumpTarget(const FixupBranch &branch)
{
if (branch.type == 0)
{
branch.ptr[-1] = (u8)(s8)(code - branch.ptr);
}
else if (branch.type == 1)
{
((s32*)branch.ptr)[-1] = (s32)(code - branch.ptr);
}
}
/*
void INC(int bits, OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "INC - Imm argument");
arg.operandReg = 0;
if (bits == 16) {Write8(0x66);}
arg.WriteRex(bits == 64);
Write8(bits == 8 ? 0xFE : 0xFF);
arg.WriteRest();
}
void DEC(int bits, OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "DEC - Imm argument");
arg.operandReg = 1;
if (bits == 16) {Write8(0x66);}
arg.WriteRex(bits == 64);
Write8(bits == 8 ? 0xFE : 0xFF);
arg.WriteRest();
}
*/
//Single byte opcodes
//There is no PUSHAD/POPAD in 64-bit mode.
void INT3() {Write8(0xCC);}
void RET() {Write8(0xC3);}
void RET_FAST() {Write8(0xF3); Write8(0xC3);} //two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to a ret
void NOP(int count)
{
// TODO: look up the fastest nop sleds for various sizes
int i;
switch (count) {
case 1:
Write8(0x90);
break;
case 2:
Write8(0x66);
Write8(0x90);
break;
default:
for (i = 0; i < count; i++) {
Write8(0x90);
}
break;
}
}
void PAUSE() {Write8(0xF3); NOP();} //use in tight spinloops for energy saving on some cpu
void CLC() {Write8(0xF8);} //clear carry
void CMC() {Write8(0xF5);} //flip carry
void STC() {Write8(0xF9);} //set carry
//TODO: xchg ah, al ???
void XCHG_AHAL()
{
Write8(0x86);
Write8(0xe0);
// alt. 86 c4
}
//These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
void LAHF() {Write8(0x9F);}
void SAHF() {Write8(0x9E);}
void PUSHF() {Write8(0x9C);}
void POPF() {Write8(0x9D);}
void LFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xE8);}
void MFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF0);}
void SFENCE() {Write8(0x0F); Write8(0xAE); Write8(0xF8);}
void WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
{
if (bits == 16) {Write8(0x66);}
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte + ((int)reg & 7));
}
void WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
{
if (bits == 16) {Write8(0x66);}
Rex(bits==64, 0, 0, (int)reg >> 3);
Write8(byte1);
Write8(byte2 + ((int)reg & 7));
}
void CWD(int bits)
{
if (bits == 16) {Write8(0x66);}
Rex(bits == 64, 0, 0, 0);
Write8(0x99);
}
void CBW(int bits)
{
if (bits == 8) {Write8(0x66);}
Rex(bits == 32, 0, 0, 0);
Write8(0x98);
}
//Simple opcodes
//push/pop do not need wide to be 64-bit
void PUSH(X64Reg reg) {WriteSimple1Byte(32, 0x50, reg);}
void POP(X64Reg reg) {WriteSimple1Byte(32, 0x58, reg);}
void PUSH(int bits, const OpArg &reg)
{
if (reg.IsSimpleReg())
PUSH(reg.GetSimpleReg());
else if (reg.IsImm())
{
switch (reg.GetImmBits())
{
case 8:
Write8(0x6A);
Write8((u8)(s8)reg.offset);
break;
case 16:
Write8(0x66);
Write8(0x68);
Write16((u16)(s16)(s32)reg.offset);
break;
case 32:
Write8(0x68);
Write32((u32)reg.offset);
break;
default:
_assert_msg_(DYNA_REC, 0, "PUSH - Bad imm bits");
break;
}
}
else
{
//INT3();
if (bits == 16)
Write8(0x66);
reg.WriteRex(bits == 64);
Write8(0xFF);
reg.WriteRest(0,(X64Reg)6);
}
}
void POP(int bits, const OpArg &reg)
{
if (reg.IsSimpleReg())
POP(reg.GetSimpleReg());
else
INT3();
}
void BSWAP(int bits, X64Reg reg)
{
if (bits >= 32)
{
WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
}
else if (bits == 16)
{
//fake 16-bit bswap, TODO replace with xchg ah, al where appropriate
WriteSimple2Byte(false, 0x0F, 0xC8, reg);
SHR(32, R(reg), Imm8(16));
}
else if (bits == 8)
{
}
else
{
_assert_msg_(DYNA_REC, 0, "BSWAP - Wrong number of bits");
}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
void UD2()
{
Write8(0x0F);
Write8(0x0B);
}
void PREFETCH(PrefetchLevel level, OpArg arg)
{
if (arg.IsImm()) _assert_msg_(DYNA_REC, 0, "PREFETCH - Imm argument");;
arg.operandReg = (u8)level;
arg.WriteRex(false);
Write8(0x0F);
Write8(0x18);
arg.WriteRest();
}
void SETcc(CCFlags flag, OpArg dest)
{
if (dest.IsImm()) _assert_msg_(DYNA_REC, 0, "SETcc - Imm argument");
dest.operandReg = 0;
dest.WriteRex(false);
Write8(0x0F);
Write8(0x90 + (u8)flag);
dest.WriteRest();
}
void CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "CMOVcc - Imm argument");
src.operandReg = dest;
src.WriteRex(bits == 64);
Write8(0x0F);
Write8(0x40 + (u8)flag);
src.WriteRest();
}
void WriteMulDivType(int bits, OpArg src, int ext)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteMulDivType - Imm argument");
src.operandReg = ext;
if (bits == 16) Write8(0x66);
src.WriteRex(bits == 64);
if (bits == 8)
{
Write8(0xF6);
}
else
{
Write8(0xF7);
}
src.WriteRest();
}
void MUL(int bits, OpArg src) {WriteMulDivType(bits, src, 4);}
void DIV(int bits, OpArg src) {WriteMulDivType(bits, src, 6);}
void IMUL(int bits, OpArg src) {WriteMulDivType(bits, src, 5);}
void IDIV(int bits, OpArg src) {WriteMulDivType(bits, src, 7);}
void NEG(int bits, OpArg src) {WriteMulDivType(bits, src, 3);}
void NOT(int bits, OpArg src) {WriteMulDivType(bits, src, 2);}
void WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "WriteBitSearchType - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16) Write8(0x66);
src.WriteRex(bits == 64);
Write8(0x0F);
Write8(byte2);
src.WriteRest();
}
void MOVNTI(int bits, OpArg dest, X64Reg src)
{
if (bits <= 16) _assert_msg_(DYNA_REC, 0, "MOVNTI - bits<=16");
WriteBitSearchType(bits, src, dest, 0xC3);
}
void BSF(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBC);} //bottom bit to top bit
void BSR(int bits, X64Reg dest, OpArg src) {WriteBitSearchType(bits,dest,src,0xBD);} //top bit to bottom bit
void MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVSX - Imm argument");
if (dbits == sbits) {
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16) Write8(0x66);
src.WriteRex(dbits == 64);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xBE);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xBF);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x63);
}
else
{
Crash();
}
src.WriteRest();
}
void MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "MOVZX - Imm argument");
if (dbits == sbits) {
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16) Write8(0x66);
src.WriteRex(dbits == 64);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xB6);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xB7);
}
else
{
Crash();
}
src.WriteRest();
}
void LEA(int bits, X64Reg dest, OpArg src)
{
if (src.IsImm()) _assert_msg_(DYNA_REC, 0, "LEA - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16) Write8(0x66); //TODO: performance warning
src.WriteRex(bits == 64);
Write8(0x8D);
src.WriteRest();
}
//shift can be either imm8 or cl
void WriteShift(int bits, OpArg dest, OpArg &shift, int ext)
{
bool writeImm = false;
if (dest.IsImm())
{
_assert_msg_(DYNA_REC, 0, "WriteShift - can't shift imms");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || (shift.IsImm() && shift.GetImmBits() != 8))
{
_assert_msg_(DYNA_REC, 0, "WriteShift - illegal argument");
}
dest.operandReg = ext;
if (bits == 16) Write8(0x66);
dest.WriteRex(bits == 64);
if (shift.GetImmBits() == 8)
{
//ok an imm
u8 imm = (u8)shift.offset;
if (imm == 1)
{
Write8(bits == 8 ? 0xD0 : 0xD1);
}
else
{
writeImm = true;
Write8(bits == 8 ? 0xC0 : 0xC1);
}
}
else
{
Write8(bits == 8 ? 0xD2 : 0xD3);
}
dest.WriteRest(writeImm ? 1 : 0);
if (writeImm)
Write8((u8)shift.offset);
}
// large rotates and shift are slower on intel than amd
// intel likes to rotate by 1, and the op is smaller too
void ROL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 0);}
void ROR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 1);}
void RCL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 2);}
void RCR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 3);}
void SHL(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 4);}
void SHR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 5);}
void SAR(int bits, OpArg dest, OpArg shift) {WriteShift(bits, dest, shift, 7);}
void OpArg::WriteSingleByteOp(u8 op, X64Reg operandReg, int bits)
{
if (bits == 16)
Write8(0x66);
this->operandReg = (u8)operandReg;
WriteRex(bits == 64);
Write8(op);
WriteRest();
}
//todo : add eax special casing
struct NormalOpDef
{
u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, ext;
};
const NormalOpDef nops[11] =
{
{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0}, //ADD
{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 2}, //ADC
{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 5}, //SUB
{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 3}, //SBB
{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 4}, //AND
{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 1}, //OR
{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 6}, //XOR
{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0}, //MOV
{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0}, //TEST (to == from)
{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 7}, //CMP
{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 7}, //XCHG
};
//operand can either be immediate or register
void OpArg::WriteNormalOp(bool toRM, NormalOp op, const OpArg &operand, int bits) const
{
X64Reg operandReg = (X64Reg)this->operandReg;
if (IsImm())
{
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
}
if (bits == 16)
Write8(0x66);
int immToWrite = 0;
if (operand.IsImm())
{
operandReg = (X64Reg)0;
WriteRex(bits == 64);
if (!toRM)
{
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
}
if (operand.scale == SCALE_IMM8 && bits == 8)
{
Write8(nops[op].imm8);
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH1");
immToWrite = 8;
}
else if (operand.scale == SCALE_IMM16 && bits == 16 ||
operand.scale == SCALE_IMM32 && bits == 32 ||
operand.scale == SCALE_IMM32 && bits == 64)
{
Write8(nops[op].imm32);
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH2");
immToWrite = 32;
}
else if (operand.scale == SCALE_IMM8 && bits == 16 ||
operand.scale == SCALE_IMM8 && bits == 32 ||
operand.scale == SCALE_IMM8 && bits == 64)
{
Write8(nops[op].simm8);
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH3");
immToWrite = 8;
}
else if (operand.scale == SCALE_IMM64 && bits == 64)
{
if (op == nrmMOV)
{
Write8(0xB8 + (offsetOrBaseReg & 7));
Write64((u64)operand.offset);
return;
}
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
}
else
{
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
}
operandReg = (X64Reg)nops[op].ext; //pass extension in REG of ModRM
}
else
{
operandReg = (X64Reg)operand.offsetOrBaseReg;
WriteRex(bits == 64, operandReg);
// mem/reg or reg/reg op
if (toRM)
{
Write8(bits == 8 ? nops[op].toRm8 : nops[op].toRm32);
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH4");
}
else
{
Write8(bits == 8 ? nops[op].fromRm8 : nops[op].fromRm32);
_assert_msg_(DYNA_REC, code[-1] != 0xCC, "ARGH5");
}
}
WriteRest(immToWrite>>3, operandReg);
switch (immToWrite)
{
case 0:
break;
case 8:
Write8((u8)operand.offset);
break;
case 32:
Write32((u32)operand.offset);
break;
default:
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
}
}
void WriteNormalOp(int bits, NormalOp op, const OpArg &a1, const OpArg &a2)
{
if (a1.IsImm())
{
//Booh! Can't write to an imm
_assert_msg_(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
return;
}
if (a2.IsImm())
{
a1.WriteNormalOp(true, op, a2, bits);
}
else
{
if (a1.IsSimpleReg())
{
a2.WriteNormalOp(false, op, a1, bits);
}
else
{
a1.WriteNormalOp(true, op, a2, bits);
}
}
}
void ADD (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmADD, a1, a2);}
void ADC (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmADC, a1, a2);}
void SUB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmSUB, a1, a2);}
void SBB (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmSBB, a1, a2);}
void AND (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmAND, a1, a2);}
void OR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmOR , a1, a2);}
void XOR (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmXOR, a1, a2);}
void MOV (int bits, const OpArg &a1, const OpArg &a2)
{
_assert_msg_(DYNA_REC, !a1.IsSimpleReg() || !a2.IsSimpleReg() || a1.GetSimpleReg() != a2.GetSimpleReg(), "Redundant MOV @ %p", code);
WriteNormalOp(bits, nrmMOV, a1, a2);
}
void TEST(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmTEST, a1, a2);}
void CMP (int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmCMP, a1, a2);}
void XCHG(int bits, const OpArg &a1, const OpArg &a2) {WriteNormalOp(bits, nrmXCHG, a1, a2);}
void WriteSSEOp(int size, u8 sseOp, bool packed, X64Reg regOp, OpArg arg, int extrabytes = 0)
{
if (size == 64 && packed)
Write8(0x66); //this time, override goes upwards
if (!packed)
Write8(size == 64 ? 0xF2 : 0xF3);
arg.operandReg = regOp;
arg.WriteRex(false);
Write8(0x0F);
Write8(sseOp);
arg.WriteRest(extrabytes);
}
void WriteMXCSR(OpArg arg, int ext)
{
if (arg.IsImm() || arg.IsSimpleReg())
_assert_msg_(DYNA_REC, 0, "MXCSR - invalid operand");
arg.operandReg = ext;
arg.WriteRex(false);
Write8(0x0F);
Write8(0xAE);
arg.WriteRest();
}
enum NormalSSEOps
{
sseCMP = 0xC2,
sseADD = 0x58, //ADD
sseSUB = 0x5C, //SUB
sseAND = 0x54, //AND
sseANDN = 0x55, //ANDN
sseOR = 0x56,
sseXOR = 0x57,
sseMUL = 0x59, //MUL,
sseDIV = 0x5E, //DIV
sseMIN = 0x5D, //MIN
sseMAX = 0x5F, //MAX
sseCOMIS = 0x2F, //COMIS
sseUCOMIS = 0x2E, //UCOMIS
sseSQRT = 0x51, //SQRT
sseRSQRT = 0x52, //RSQRT (NO DOUBLE PRECISION!!!)
sseMOVAPfromRM = 0x28, //MOVAP from RM
sseMOVAPtoRM = 0x29, //MOVAP to RM
sseMOVUPfromRM = 0x10, //MOVUP from RM
sseMOVUPtoRM = 0x11, //MOVUP to RM
sseMASKMOVDQU = 0xF7,
sseLDDQU = 0xF0,
sseSHUF = 0xC6,
sseMOVNTDQ = 0xE7,
sseMOVNTP = 0x2B,
};
void STMXCSR(OpArg memloc) {WriteMXCSR(memloc, 3);}
void LDMXCSR(OpArg memloc) {WriteMXCSR(memloc, 2);}
void MOVNTDQ(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTDQ, true, regOp, arg);}
void MOVNTPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVNTP, true, regOp, arg);}
void MOVNTPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVNTP, true, regOp, arg);}
void ADDSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, false, regOp, arg);}
void ADDSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, false, regOp, arg);}
void SUBSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, false, regOp, arg);}
void SUBSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, false, regOp, arg);}
void CMPSS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, false, regOp, arg,1); Write8(compare);}
void CMPSD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, false, regOp, arg,1); Write8(compare);}
void MULSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, false, regOp, arg);}
void MULSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, false, regOp, arg);}
void DIVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, false, regOp, arg);}
void DIVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, false, regOp, arg);}
void MINSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, false, regOp, arg);}
void MINSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, false, regOp, arg);}
void MAXSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, false, regOp, arg);}
void MAXSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, false, regOp, arg);}
void SQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, false, regOp, arg);}
void SQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, false, regOp, arg);}
void RSQRTSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, false, regOp, arg);}
void RSQRTSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseRSQRT, false, regOp, arg);}
void ADDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseADD, true, regOp, arg);}
void ADDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseADD, true, regOp, arg);}
void SUBPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSUB, true, regOp, arg);}
void SUBPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSUB, true, regOp, arg);}
void CMPPS(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(32, sseCMP, true, regOp, arg,1); Write8(compare);}
void CMPPD(X64Reg regOp, OpArg arg, u8 compare) {WriteSSEOp(64, sseCMP, true, regOp, arg,1); Write8(compare);}
void ANDPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseAND, true, regOp, arg);}
void ANDPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseAND, true, regOp, arg);}
void ANDNPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseANDN, true, regOp, arg);}
void ANDNPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseANDN, true, regOp, arg);}
void ORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseOR, true, regOp, arg);}
void ORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseOR, true, regOp, arg);}
void XORPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseXOR, true, regOp, arg);}
void XORPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseXOR, true, regOp, arg);}
void MULPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMUL, true, regOp, arg);}
void MULPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMUL, true, regOp, arg);}
void DIVPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseDIV, true, regOp, arg);}
void DIVPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseDIV, true, regOp, arg);}
void MINPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMIN, true, regOp, arg);}
void MINPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMIN, true, regOp, arg);}
void MAXPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMAX, true, regOp, arg);}
void MAXPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMAX, true, regOp, arg);}
void SQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseSQRT, true, regOp, arg);}
void SQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseSQRT, true, regOp, arg);}
void RSQRTPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseRSQRT, true, regOp, arg);}
void RSQRTPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseRSQRT, true, regOp, arg);}
void SHUFPS(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(32, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
void SHUFPD(X64Reg regOp, OpArg arg, u8 shuffle) {WriteSSEOp(64, sseSHUF, true, regOp, arg,1); Write8(shuffle);}
void COMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseCOMIS, true, regOp, arg);} //weird that these should be packed
void COMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseCOMIS, true, regOp, arg);} //ordered
void UCOMISS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseUCOMIS, true, regOp, arg);} //unordered
void UCOMISD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseUCOMIS, true, regOp, arg);}
void MOVAPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVAPfromRM, true, regOp, arg);}
void MOVAPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVAPfromRM, true, regOp, arg);}
void MOVAPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVAPtoRM, true, regOp, arg);}
void MOVAPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVAPtoRM, true, regOp, arg);}
void MOVUPS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, true, regOp, arg);}
void MOVUPD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, true, regOp, arg);}
void MOVUPS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, true, regOp, arg);}
void MOVUPD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, true, regOp, arg);}
void MOVSS(X64Reg regOp, OpArg arg) {WriteSSEOp(32, sseMOVUPfromRM, false, regOp, arg);}
void MOVSD(X64Reg regOp, OpArg arg) {WriteSSEOp(64, sseMOVUPfromRM, false, regOp, arg);}
void MOVSS(OpArg arg, X64Reg regOp) {WriteSSEOp(32, sseMOVUPtoRM, false, regOp, arg);}
void MOVSD(OpArg arg, X64Reg regOp) {WriteSSEOp(64, sseMOVUPtoRM, false, regOp, arg);}
void CVTPS2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, true, regOp, arg);}
void CVTPD2PS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, true, regOp, arg);}
void CVTSD2SS(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0x5A, false, regOp, arg);}
void CVTSS2SD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0x5A, false, regOp, arg);}
void CVTSD2SI(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xF2, false, regOp, arg);}
void CVTDQ2PD(X64Reg regOp, OpArg arg) {WriteSSEOp(32, 0xE6, false, regOp, arg);}
void CVTDQ2PS(X64Reg regOp, const OpArg &arg) {WriteSSEOp(32, 0x5B, true, regOp, arg);}
void CVTPD2DQ(X64Reg regOp, OpArg arg) {WriteSSEOp(64, 0xE6, false, regOp, arg);}
void MASKMOVDQU(X64Reg dest, X64Reg src) {WriteSSEOp(64, sseMASKMOVDQU, true, dest, R(src));}
void MOVMSKPS(X64Reg dest, OpArg arg) {WriteSSEOp(32, 0x50, true, dest, arg);}
void MOVMSKPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x50, true, dest, arg);}
void LDDQU(X64Reg dest, OpArg arg) {WriteSSEOp(64, sseLDDQU, false, dest, arg);} // For integer data only
void UNPCKLPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x14, true, dest, arg);}
void UNPCKHPD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x15, true, dest, arg);}
void MOVDDUP(X64Reg regOp, OpArg arg)
{
// TODO(ector): check SSE3 flag
if (cpu_info.bSSE3NewInstructions)
{
WriteSSEOp(64, 0x12, false, regOp, arg); //SSE3
}
else
{
// Simulate this instruction with SSE2 instructions
if (!arg.IsSimpleReg(regOp))
MOVAPD(regOp, arg);
UNPCKLPD(regOp, R(regOp));
}
}
void MOVD_xmm(X64Reg dest, const OpArg &arg){WriteSSEOp(64, 0x6E, true, dest, arg, 0);}
void MOVQ_xmm(X64Reg dest, const OpArg &arg){WriteSSEOp(64, 0x6E, false, dest, arg, 0);}
void MOVD_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, true, src, arg, 0);}
void MOVQ_xmm(const OpArg &arg, X64Reg src) {WriteSSEOp(64, 0x7E, false, src, arg, 0);}
//There are a few more left
// Also some integer instrucitons are missing
void PACKSSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x6B, true, dest, arg);}
void PACKSSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x63, true, dest, arg);}
//void PACKUSDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);} // WRONG
void PACKUSWB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x67, true, dest, arg);}
void PUNPCKLBW(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
void PUNPCKLWD(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x61, true, dest, arg);}
void PUNPCKLDQ(X64Reg dest, const OpArg &arg) {WriteSSEOp(64, 0x62, true, dest, arg);}
//void PUNPCKLQDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x60, true, dest, arg);}
// WARNING not REX compatible
void PSRAW(X64Reg reg, int shift) {
Write8(0x66);
Write8(0x0f);
Write8(0x71);
Write8(0xE0 | reg);
Write8(shift);
}
// WARNING not REX compatible
void PSRAD(X64Reg reg, int shift) {
Write8(0x66);
Write8(0x0f);
Write8(0x72);
Write8(0xE0 | reg);
Write8(shift);
}
void PAND(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDB, true, dest, arg);}
void PANDN(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDF, true, dest, arg);}
void PXOR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEF, true, dest, arg);}
void POR(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEB, true, dest, arg);}
void PADDB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFC, true, dest, arg);}
void PADDW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFD, true, dest, arg);}
void PADDD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFE, true, dest, arg);}
void PADDQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD4, true, dest, arg);}
void PADDSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEC, true, dest, arg);}
void PADDSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xED, true, dest, arg);}
void PADDUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDC, true, dest, arg);}
void PADDUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDD, true, dest, arg);}
void PSUBB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF8, true, dest, arg);}
void PSUBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF9, true, dest, arg);}
void PSUBD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xFA, true, dest, arg);}
void PSUBQ(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDB, true, dest, arg);}
void PSUBSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE8, true, dest, arg);}
void PSUBSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE9, true, dest, arg);}
void PSUBUSB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD8, true, dest, arg);}
void PSUBUSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD9, true, dest, arg);}
void PAVGB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE0, true, dest, arg);}
void PAVGW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xE3, true, dest, arg);}
void PCMPEQB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x74, true, dest, arg);}
void PCMPEQW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x75, true, dest, arg);}
void PCMPEQD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x76, true, dest, arg);}
void PCMPGTB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x64, true, dest, arg);}
void PCMPGTW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x65, true, dest, arg);}
void PCMPGTD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0x66, true, dest, arg);}
void PEXTRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0x64, true, dest, arg); Write8(subreg);}
void PINSRW(X64Reg dest, OpArg arg, u8 subreg) {WriteSSEOp(64, 0x64, true, dest, arg); Write8(subreg);}
void PMADDWD(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF5, true, dest, arg); }
void PSADBW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xF6, true, dest, arg);}
void PMAXSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEE, true, dest, arg); }
void PMAXUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDE, true, dest, arg); }
void PMINSW(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xEA, true, dest, arg); }
void PMINUB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xDA, true, dest, arg); }
void PMOVMSKB(X64Reg dest, OpArg arg) {WriteSSEOp(64, 0xD7, true, dest, arg); }
// Prefixes
void LOCK() { Write8(0xF0); }
void REP() { Write8(0xF3); }
void REPNE(){ Write8(0xF2); }
void FWAIT()
{
Write8(0x9B);
}
namespace Util
{
// Sets up a __cdecl function.
void EmitPrologue(int maxCallParams)
{
#ifdef _M_IX86
// Don't really need to do anything
#elif defined(_M_X64)
#if _WIN32
int stacksize = ((maxCallParams+1)&~1)*8 + 8;
// Set up a stack frame so that we can call functions
// TODO: use maxCallParams
SUB(64, R(RSP), Imm8(stacksize));
#endif
#else
#error Arch not supported
#endif
}
void EmitEpilogue(int maxCallParams)
{
#ifdef _M_IX86
RET();
#elif defined(_M_X64)
#ifdef _WIN32
int stacksize = ((maxCallParams+1)&~1)*8 + 8;
ADD(64, R(RSP), Imm8(stacksize));
#endif
RET();
#else
#error Arch not supported
#endif
}
} // namespace
// helper routines for setting pointers
void CallCdeclFunction3(void* fnptr, u32 arg0, u32 arg1, u32 arg2)
{
using namespace Gen;
#ifdef _M_X64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
CALL(fnptr);
#endif
#else
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
// don't inc stack
#endif
}
void CallCdeclFunction4(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3)
{
using namespace Gen;
#ifdef _M_X64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
MOV(32, R(RCX), Imm32(arg3));
CALL(fnptr);
#endif
#else
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
// don't inc stack
#endif
}
void CallCdeclFunction5(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4)
{
using namespace Gen;
#ifdef _M_X64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
MOV(32, R(RCX), Imm32(arg3));
MOV(32, R(R8), Imm32(arg4));
CALL(fnptr);
#endif
#else
PUSH(32, Imm32(arg4));
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
// don't inc stack
#endif
}
void CallCdeclFunction6(void* fnptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5)
{
using namespace Gen;
#ifdef _M_X64
#ifdef _MSC_VER
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
CALL(fnptr);
#else
MOV(32, R(RDI), Imm32(arg0));
MOV(32, R(RSI), Imm32(arg1));
MOV(32, R(RDX), Imm32(arg2));
MOV(32, R(RCX), Imm32(arg3));
MOV(32, R(R8), Imm32(arg4));
MOV(32, R(R9), Imm32(arg5));
CALL(fnptr);
#endif
#else
PUSH(32, Imm32(arg5));
PUSH(32, Imm32(arg4));
PUSH(32, Imm32(arg3));
PUSH(32, Imm32(arg2));
PUSH(32, Imm32(arg1));
PUSH(32, Imm32(arg0));
CALL(fnptr);
// don't inc stack
#endif
}
#ifdef _M_X64
// See header
void ___CallCdeclImport3(void* impptr, u32 arg0, u32 arg1, u32 arg2) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
CALLptr(M(impptr));
}
void ___CallCdeclImport4(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
CALLptr(M(impptr));
}
void ___CallCdeclImport5(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
CALLptr(M(impptr));
}
void ___CallCdeclImport6(void* impptr, u32 arg0, u32 arg1, u32 arg2, u32 arg3, u32 arg4, u32 arg5) {
MOV(32, R(RCX), Imm32(arg0));
MOV(32, R(RDX), Imm32(arg1));
MOV(32, R(R8), Imm32(arg2));
MOV(32, R(R9), Imm32(arg3));
MOV(32, MDisp(RSP, 0x20), Imm32(arg4));
MOV(32, MDisp(RSP, 0x28), Imm32(arg5));
CALLptr(M(impptr));
}
#endif
}