mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-01 03:40:51 +01:00
633 lines
17 KiB
C
633 lines
17 KiB
C
|
/*
|
||
|
Jonathan Dummer
|
||
|
2007-07-31-10.32
|
||
|
|
||
|
simple DXT compression / decompression code
|
||
|
|
||
|
public domain
|
||
|
*/
|
||
|
|
||
|
#include "image_DXT.h"
|
||
|
#include <math.h>
|
||
|
#include <stdlib.h>
|
||
|
#include <string.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
/* set this =1 if you want to use the covarince matrix method...
|
||
|
which is better than my method of using standard deviations
|
||
|
overall, except on the infintesimal chance that the power
|
||
|
method fails for finding the largest eigenvector */
|
||
|
#define USE_COV_MAT 1
|
||
|
|
||
|
/********* Function Prototypes *********/
|
||
|
/*
|
||
|
Takes a 4x4 block of pixels and compresses it into 8 bytes
|
||
|
in DXT1 format (color only, no alpha). Speed is valued
|
||
|
over prettyness, at least for now.
|
||
|
*/
|
||
|
void compress_DDS_color_block(
|
||
|
int channels,
|
||
|
const unsigned char *const uncompressed,
|
||
|
unsigned char compressed[8] );
|
||
|
/*
|
||
|
Takes a 4x4 block of pixels and compresses the alpha
|
||
|
component it into 8 bytes for use in DXT5 DDS files.
|
||
|
Speed is valued over prettyness, at least for now.
|
||
|
*/
|
||
|
void compress_DDS_alpha_block(
|
||
|
const unsigned char *const uncompressed,
|
||
|
unsigned char compressed[8] );
|
||
|
|
||
|
/********* Actual Exposed Functions *********/
|
||
|
int
|
||
|
save_image_as_DDS
|
||
|
(
|
||
|
const char *filename,
|
||
|
int width, int height, int channels,
|
||
|
const unsigned char *const data
|
||
|
)
|
||
|
{
|
||
|
/* variables */
|
||
|
FILE *fout;
|
||
|
unsigned char *DDS_data;
|
||
|
DDS_header header;
|
||
|
int DDS_size;
|
||
|
/* error check */
|
||
|
if( (NULL == filename) ||
|
||
|
(width < 1) || (height < 1) ||
|
||
|
(channels < 1) || (channels > 4) ||
|
||
|
(data == NULL ) )
|
||
|
{
|
||
|
return 0;
|
||
|
}
|
||
|
/* Convert the image */
|
||
|
if( (channels & 1) == 1 )
|
||
|
{
|
||
|
/* no alpha, just use DXT1 */
|
||
|
DDS_data = convert_image_to_DXT1( data, width, height, channels, &DDS_size );
|
||
|
} else
|
||
|
{
|
||
|
/* has alpha, so use DXT5 */
|
||
|
DDS_data = convert_image_to_DXT5( data, width, height, channels, &DDS_size );
|
||
|
}
|
||
|
/* save it */
|
||
|
memset( &header, 0, sizeof( DDS_header ) );
|
||
|
header.dwMagic = ('D' << 0) | ('D' << 8) | ('S' << 16) | (' ' << 24);
|
||
|
header.dwSize = 124;
|
||
|
header.dwFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_PIXELFORMAT | DDSD_LINEARSIZE;
|
||
|
header.dwWidth = width;
|
||
|
header.dwHeight = height;
|
||
|
header.dwPitchOrLinearSize = DDS_size;
|
||
|
header.sPixelFormat.dwSize = 32;
|
||
|
header.sPixelFormat.dwFlags = DDPF_FOURCC;
|
||
|
if( (channels & 1) == 1 )
|
||
|
{
|
||
|
header.sPixelFormat.dwFourCC = ('D' << 0) | ('X' << 8) | ('T' << 16) | ('1' << 24);
|
||
|
} else
|
||
|
{
|
||
|
header.sPixelFormat.dwFourCC = ('D' << 0) | ('X' << 8) | ('T' << 16) | ('5' << 24);
|
||
|
}
|
||
|
header.sCaps.dwCaps1 = DDSCAPS_TEXTURE;
|
||
|
/* write it out */
|
||
|
fout = fopen( filename, "wb");
|
||
|
fwrite( &header, sizeof( DDS_header ), 1, fout );
|
||
|
fwrite( DDS_data, 1, DDS_size, fout );
|
||
|
fclose( fout );
|
||
|
/* done */
|
||
|
free( DDS_data );
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
unsigned char* convert_image_to_DXT1(
|
||
|
const unsigned char *const uncompressed,
|
||
|
int width, int height, int channels,
|
||
|
int *out_size )
|
||
|
{
|
||
|
unsigned char *compressed;
|
||
|
int i, j, x, y;
|
||
|
unsigned char ublock[16*3];
|
||
|
unsigned char cblock[8];
|
||
|
int index = 0, chan_step = 1;
|
||
|
int block_count = 0;
|
||
|
/* error check */
|
||
|
*out_size = 0;
|
||
|
if( (width < 1) || (height < 1) ||
|
||
|
(NULL == uncompressed) ||
|
||
|
(channels < 1) || (channels > 4) )
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
/* for channels == 1 or 2, I do not step forward for R,G,B values */
|
||
|
if( channels < 3 )
|
||
|
{
|
||
|
chan_step = 0;
|
||
|
}
|
||
|
/* get the RAM for the compressed image
|
||
|
(8 bytes per 4x4 pixel block) */
|
||
|
*out_size = ((width+3) >> 2) * ((height+3) >> 2) * 8;
|
||
|
compressed = (unsigned char*)malloc( *out_size );
|
||
|
/* go through each block */
|
||
|
for( j = 0; j < height; j += 4 )
|
||
|
{
|
||
|
for( i = 0; i < width; i += 4 )
|
||
|
{
|
||
|
/* copy this block into a new one */
|
||
|
int idx = 0;
|
||
|
int mx = 4, my = 4;
|
||
|
if( j+4 >= height )
|
||
|
{
|
||
|
my = height - j;
|
||
|
}
|
||
|
if( i+4 >= width )
|
||
|
{
|
||
|
mx = width - i;
|
||
|
}
|
||
|
for( y = 0; y < my; ++y )
|
||
|
{
|
||
|
for( x = 0; x < mx; ++x )
|
||
|
{
|
||
|
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels];
|
||
|
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step];
|
||
|
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step+chan_step];
|
||
|
}
|
||
|
for( x = mx; x < 4; ++x )
|
||
|
{
|
||
|
ublock[idx++] = ublock[0];
|
||
|
ublock[idx++] = ublock[1];
|
||
|
ublock[idx++] = ublock[2];
|
||
|
}
|
||
|
}
|
||
|
for( y = my; y < 4; ++y )
|
||
|
{
|
||
|
for( x = 0; x < 4; ++x )
|
||
|
{
|
||
|
ublock[idx++] = ublock[0];
|
||
|
ublock[idx++] = ublock[1];
|
||
|
ublock[idx++] = ublock[2];
|
||
|
}
|
||
|
}
|
||
|
/* compress the block */
|
||
|
++block_count;
|
||
|
compress_DDS_color_block( 3, ublock, cblock );
|
||
|
/* copy the data from the block into the main block */
|
||
|
for( x = 0; x < 8; ++x )
|
||
|
{
|
||
|
compressed[index++] = cblock[x];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return compressed;
|
||
|
}
|
||
|
|
||
|
unsigned char* convert_image_to_DXT5(
|
||
|
const unsigned char *const uncompressed,
|
||
|
int width, int height, int channels,
|
||
|
int *out_size )
|
||
|
{
|
||
|
unsigned char *compressed;
|
||
|
int i, j, x, y;
|
||
|
unsigned char ublock[16*4];
|
||
|
unsigned char cblock[8];
|
||
|
int index = 0, chan_step = 1;
|
||
|
int block_count = 0, has_alpha;
|
||
|
/* error check */
|
||
|
*out_size = 0;
|
||
|
if( (width < 1) || (height < 1) ||
|
||
|
(NULL == uncompressed) ||
|
||
|
(channels < 1) || ( channels > 4) )
|
||
|
{
|
||
|
return NULL;
|
||
|
}
|
||
|
/* for channels == 1 or 2, I do not step forward for R,G,B vales */
|
||
|
if( channels < 3 )
|
||
|
{
|
||
|
chan_step = 0;
|
||
|
}
|
||
|
/* # channels = 1 or 3 have no alpha, 2 & 4 do have alpha */
|
||
|
has_alpha = 1 - (channels & 1);
|
||
|
/* get the RAM for the compressed image
|
||
|
(16 bytes per 4x4 pixel block) */
|
||
|
*out_size = ((width+3) >> 2) * ((height+3) >> 2) * 16;
|
||
|
compressed = (unsigned char*)malloc( *out_size );
|
||
|
/* go through each block */
|
||
|
for( j = 0; j < height; j += 4 )
|
||
|
{
|
||
|
for( i = 0; i < width; i += 4 )
|
||
|
{
|
||
|
/* local variables, and my block counter */
|
||
|
int idx = 0;
|
||
|
int mx = 4, my = 4;
|
||
|
if( j+4 >= height )
|
||
|
{
|
||
|
my = height - j;
|
||
|
}
|
||
|
if( i+4 >= width )
|
||
|
{
|
||
|
mx = width - i;
|
||
|
}
|
||
|
for( y = 0; y < my; ++y )
|
||
|
{
|
||
|
for( x = 0; x < mx; ++x )
|
||
|
{
|
||
|
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels];
|
||
|
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step];
|
||
|
ublock[idx++] = uncompressed[(j+y)*width*channels+(i+x)*channels+chan_step+chan_step];
|
||
|
ublock[idx++] =
|
||
|
has_alpha * uncompressed[(j+y)*width*channels+(i+x)*channels+channels-1]
|
||
|
+ (1-has_alpha)*255;
|
||
|
}
|
||
|
for( x = mx; x < 4; ++x )
|
||
|
{
|
||
|
ublock[idx++] = ublock[0];
|
||
|
ublock[idx++] = ublock[1];
|
||
|
ublock[idx++] = ublock[2];
|
||
|
ublock[idx++] = ublock[3];
|
||
|
}
|
||
|
}
|
||
|
for( y = my; y < 4; ++y )
|
||
|
{
|
||
|
for( x = 0; x < 4; ++x )
|
||
|
{
|
||
|
ublock[idx++] = ublock[0];
|
||
|
ublock[idx++] = ublock[1];
|
||
|
ublock[idx++] = ublock[2];
|
||
|
ublock[idx++] = ublock[3];
|
||
|
}
|
||
|
}
|
||
|
/* now compress the alpha block */
|
||
|
compress_DDS_alpha_block( ublock, cblock );
|
||
|
/* copy the data from the compressed alpha block into the main buffer */
|
||
|
for( x = 0; x < 8; ++x )
|
||
|
{
|
||
|
compressed[index++] = cblock[x];
|
||
|
}
|
||
|
/* then compress the color block */
|
||
|
++block_count;
|
||
|
compress_DDS_color_block( 4, ublock, cblock );
|
||
|
/* copy the data from the compressed color block into the main buffer */
|
||
|
for( x = 0; x < 8; ++x )
|
||
|
{
|
||
|
compressed[index++] = cblock[x];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return compressed;
|
||
|
}
|
||
|
|
||
|
/********* Helper Functions *********/
|
||
|
int convert_bit_range( int c, int from_bits, int to_bits )
|
||
|
{
|
||
|
int b = (1 << (from_bits - 1)) + c * ((1 << to_bits) - 1);
|
||
|
return (b + (b >> from_bits)) >> from_bits;
|
||
|
}
|
||
|
|
||
|
int rgb_to_565( int r, int g, int b )
|
||
|
{
|
||
|
return
|
||
|
(convert_bit_range( r, 8, 5 ) << 11) |
|
||
|
(convert_bit_range( g, 8, 6 ) << 05) |
|
||
|
(convert_bit_range( b, 8, 5 ) << 00);
|
||
|
}
|
||
|
|
||
|
void rgb_888_from_565( unsigned int c, int *r, int *g, int *b )
|
||
|
{
|
||
|
*r = convert_bit_range( (c >> 11) & 31, 5, 8 );
|
||
|
*g = convert_bit_range( (c >> 05) & 63, 6, 8 );
|
||
|
*b = convert_bit_range( (c >> 00) & 31, 5, 8 );
|
||
|
}
|
||
|
|
||
|
void compute_color_line_STDEV(
|
||
|
const unsigned char *const uncompressed,
|
||
|
int channels,
|
||
|
float point[3], float direction[3] )
|
||
|
{
|
||
|
const float inv_16 = 1.0f / 16.0f;
|
||
|
int i;
|
||
|
float sum_r = 0.0f, sum_g = 0.0f, sum_b = 0.0f;
|
||
|
float sum_rr = 0.0f, sum_gg = 0.0f, sum_bb = 0.0f;
|
||
|
float sum_rg = 0.0f, sum_rb = 0.0f, sum_gb = 0.0f;
|
||
|
/* calculate all data needed for the covariance matrix
|
||
|
( to compare with _rygdxt code) */
|
||
|
for( i = 0; i < 16*channels; i += channels )
|
||
|
{
|
||
|
sum_r += uncompressed[i+0];
|
||
|
sum_rr += uncompressed[i+0] * uncompressed[i+0];
|
||
|
sum_g += uncompressed[i+1];
|
||
|
sum_gg += uncompressed[i+1] * uncompressed[i+1];
|
||
|
sum_b += uncompressed[i+2];
|
||
|
sum_bb += uncompressed[i+2] * uncompressed[i+2];
|
||
|
sum_rg += uncompressed[i+0] * uncompressed[i+1];
|
||
|
sum_rb += uncompressed[i+0] * uncompressed[i+2];
|
||
|
sum_gb += uncompressed[i+1] * uncompressed[i+2];
|
||
|
}
|
||
|
/* convert the sums to averages */
|
||
|
sum_r *= inv_16;
|
||
|
sum_g *= inv_16;
|
||
|
sum_b *= inv_16;
|
||
|
/* and convert the squares to the squares of the value - avg_value */
|
||
|
sum_rr -= 16.0f * sum_r * sum_r;
|
||
|
sum_gg -= 16.0f * sum_g * sum_g;
|
||
|
sum_bb -= 16.0f * sum_b * sum_b;
|
||
|
sum_rg -= 16.0f * sum_r * sum_g;
|
||
|
sum_rb -= 16.0f * sum_r * sum_b;
|
||
|
sum_gb -= 16.0f * sum_g * sum_b;
|
||
|
/* the point on the color line is the average */
|
||
|
point[0] = sum_r;
|
||
|
point[1] = sum_g;
|
||
|
point[2] = sum_b;
|
||
|
#if USE_COV_MAT
|
||
|
/*
|
||
|
The following idea was from ryg.
|
||
|
(https://mollyrocket.com/forums/viewtopic.php?t=392)
|
||
|
The method worked great (less RMSE than mine) most of
|
||
|
the time, but had some issues handling some simple
|
||
|
boundary cases, like full green next to full red,
|
||
|
which would generate a covariance matrix like this:
|
||
|
|
||
|
| 1 -1 0 |
|
||
|
| -1 1 0 |
|
||
|
| 0 0 0 |
|
||
|
|
||
|
For a given starting vector, the power method can
|
||
|
generate all zeros! So no starting with {1,1,1}
|
||
|
as I was doing! This kind of error is still a
|
||
|
slight posibillity, but will be very rare.
|
||
|
*/
|
||
|
/* use the covariance matrix directly
|
||
|
(1st iteration, don't use all 1.0 values!) */
|
||
|
sum_r = 1.0f;
|
||
|
sum_g = 2.718281828f;
|
||
|
sum_b = 3.141592654f;
|
||
|
direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb;
|
||
|
direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb;
|
||
|
direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb;
|
||
|
/* 2nd iteration, use results from the 1st guy */
|
||
|
sum_r = direction[0];
|
||
|
sum_g = direction[1];
|
||
|
sum_b = direction[2];
|
||
|
direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb;
|
||
|
direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb;
|
||
|
direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb;
|
||
|
/* 3rd iteration, use results from the 2nd guy */
|
||
|
sum_r = direction[0];
|
||
|
sum_g = direction[1];
|
||
|
sum_b = direction[2];
|
||
|
direction[0] = sum_r*sum_rr + sum_g*sum_rg + sum_b*sum_rb;
|
||
|
direction[1] = sum_r*sum_rg + sum_g*sum_gg + sum_b*sum_gb;
|
||
|
direction[2] = sum_r*sum_rb + sum_g*sum_gb + sum_b*sum_bb;
|
||
|
#else
|
||
|
/* use my standard deviation method
|
||
|
(very robust, a tiny bit slower and less accurate) */
|
||
|
direction[0] = sqrt( sum_rr );
|
||
|
direction[1] = sqrt( sum_gg );
|
||
|
direction[2] = sqrt( sum_bb );
|
||
|
/* which has a greater component */
|
||
|
if( sum_gg > sum_rr )
|
||
|
{
|
||
|
/* green has greater component, so base the other signs off of green */
|
||
|
if( sum_rg < 0.0f )
|
||
|
{
|
||
|
direction[0] = -direction[0];
|
||
|
}
|
||
|
if( sum_gb < 0.0f )
|
||
|
{
|
||
|
direction[2] = -direction[2];
|
||
|
}
|
||
|
} else
|
||
|
{
|
||
|
/* red has a greater component */
|
||
|
if( sum_rg < 0.0f )
|
||
|
{
|
||
|
direction[1] = -direction[1];
|
||
|
}
|
||
|
if( sum_rb < 0.0f )
|
||
|
{
|
||
|
direction[2] = -direction[2];
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
void LSE_master_colors_max_min(
|
||
|
int *cmax, int *cmin,
|
||
|
int channels,
|
||
|
const unsigned char *const uncompressed )
|
||
|
{
|
||
|
int i, j;
|
||
|
/* the master colors */
|
||
|
int c0[3], c1[3];
|
||
|
/* used for fitting the line */
|
||
|
float sum_x[] = { 0.0f, 0.0f, 0.0f };
|
||
|
float sum_x2[] = { 0.0f, 0.0f, 0.0f };
|
||
|
float dot_max = 1.0f, dot_min = -1.0f;
|
||
|
float vec_len2 = 0.0f;
|
||
|
float dot;
|
||
|
/* error check */
|
||
|
if( (channels < 3) || (channels > 4) )
|
||
|
{
|
||
|
return;
|
||
|
}
|
||
|
compute_color_line_STDEV( uncompressed, channels, sum_x, sum_x2 );
|
||
|
vec_len2 = 1.0f / ( 0.00001f +
|
||
|
sum_x2[0]*sum_x2[0] + sum_x2[1]*sum_x2[1] + sum_x2[2]*sum_x2[2] );
|
||
|
/* finding the max and min vector values */
|
||
|
dot_max =
|
||
|
(
|
||
|
sum_x2[0] * uncompressed[0] +
|
||
|
sum_x2[1] * uncompressed[1] +
|
||
|
sum_x2[2] * uncompressed[2]
|
||
|
);
|
||
|
dot_min = dot_max;
|
||
|
for( i = 1; i < 16; ++i )
|
||
|
{
|
||
|
dot =
|
||
|
(
|
||
|
sum_x2[0] * uncompressed[i*channels+0] +
|
||
|
sum_x2[1] * uncompressed[i*channels+1] +
|
||
|
sum_x2[2] * uncompressed[i*channels+2]
|
||
|
);
|
||
|
if( dot < dot_min )
|
||
|
{
|
||
|
dot_min = dot;
|
||
|
} else if( dot > dot_max )
|
||
|
{
|
||
|
dot_max = dot;
|
||
|
}
|
||
|
}
|
||
|
/* and the offset (from the average location) */
|
||
|
dot = sum_x2[0]*sum_x[0] + sum_x2[1]*sum_x[1] + sum_x2[2]*sum_x[2];
|
||
|
dot_min -= dot;
|
||
|
dot_max -= dot;
|
||
|
/* post multiply by the scaling factor */
|
||
|
dot_min *= vec_len2;
|
||
|
dot_max *= vec_len2;
|
||
|
/* OK, build the master colors */
|
||
|
for( i = 0; i < 3; ++i )
|
||
|
{
|
||
|
/* color 0 */
|
||
|
c0[i] = (int)(0.5f + sum_x[i] + dot_max * sum_x2[i]);
|
||
|
if( c0[i] < 0 )
|
||
|
{
|
||
|
c0[i] = 0;
|
||
|
} else if( c0[i] > 255 )
|
||
|
{
|
||
|
c0[i] = 255;
|
||
|
}
|
||
|
/* color 1 */
|
||
|
c1[i] = (int)(0.5f + sum_x[i] + dot_min * sum_x2[i]);
|
||
|
if( c1[i] < 0 )
|
||
|
{
|
||
|
c1[i] = 0;
|
||
|
} else if( c1[i] > 255 )
|
||
|
{
|
||
|
c1[i] = 255;
|
||
|
}
|
||
|
}
|
||
|
/* down_sample (with rounding?) */
|
||
|
i = rgb_to_565( c0[0], c0[1], c0[2] );
|
||
|
j = rgb_to_565( c1[0], c1[1], c1[2] );
|
||
|
if( i > j )
|
||
|
{
|
||
|
*cmax = i;
|
||
|
*cmin = j;
|
||
|
} else
|
||
|
{
|
||
|
*cmax = j;
|
||
|
*cmin = i;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
compress_DDS_color_block
|
||
|
(
|
||
|
int channels,
|
||
|
const unsigned char *const uncompressed,
|
||
|
unsigned char compressed[8]
|
||
|
)
|
||
|
{
|
||
|
/* variables */
|
||
|
int i;
|
||
|
int next_bit;
|
||
|
int enc_c0, enc_c1;
|
||
|
int c0[4], c1[4];
|
||
|
float color_line[] = { 0.0f, 0.0f, 0.0f, 0.0f };
|
||
|
float vec_len2 = 0.0f, dot_offset = 0.0f;
|
||
|
/* stupid order */
|
||
|
int swizzle4[] = { 0, 2, 3, 1 };
|
||
|
/* get the master colors */
|
||
|
LSE_master_colors_max_min( &enc_c0, &enc_c1, channels, uncompressed );
|
||
|
/* store the 565 color 0 and color 1 */
|
||
|
compressed[0] = (enc_c0 >> 0) & 255;
|
||
|
compressed[1] = (enc_c0 >> 8) & 255;
|
||
|
compressed[2] = (enc_c1 >> 0) & 255;
|
||
|
compressed[3] = (enc_c1 >> 8) & 255;
|
||
|
/* zero out the compressed data */
|
||
|
compressed[4] = 0;
|
||
|
compressed[5] = 0;
|
||
|
compressed[6] = 0;
|
||
|
compressed[7] = 0;
|
||
|
/* reconstitute the master color vectors */
|
||
|
rgb_888_from_565( enc_c0, &c0[0], &c0[1], &c0[2] );
|
||
|
rgb_888_from_565( enc_c1, &c1[0], &c1[1], &c1[2] );
|
||
|
/* the new vector */
|
||
|
vec_len2 = 0.0f;
|
||
|
for( i = 0; i < 3; ++i )
|
||
|
{
|
||
|
color_line[i] = (float)(c1[i] - c0[i]);
|
||
|
vec_len2 += color_line[i] * color_line[i];
|
||
|
}
|
||
|
if( vec_len2 > 0.0f )
|
||
|
{
|
||
|
vec_len2 = 1.0f / vec_len2;
|
||
|
}
|
||
|
/* pre-proform the scaling */
|
||
|
color_line[0] *= vec_len2;
|
||
|
color_line[1] *= vec_len2;
|
||
|
color_line[2] *= vec_len2;
|
||
|
/* compute the offset (constant) portion of the dot product */
|
||
|
dot_offset = color_line[0]*c0[0] + color_line[1]*c0[1] + color_line[2]*c0[2];
|
||
|
/* store the rest of the bits */
|
||
|
next_bit = 8*4;
|
||
|
for( i = 0; i < 16; ++i )
|
||
|
{
|
||
|
/* find the dot product of this color, to place it on the line
|
||
|
(should be [-1,1]) */
|
||
|
int next_value = 0;
|
||
|
float dot_product =
|
||
|
color_line[0] * uncompressed[i*channels+0] +
|
||
|
color_line[1] * uncompressed[i*channels+1] +
|
||
|
color_line[2] * uncompressed[i*channels+2] -
|
||
|
dot_offset;
|
||
|
/* map to [0,3] */
|
||
|
next_value = (int)( dot_product * 3.0f + 0.5f );
|
||
|
if( next_value > 3 )
|
||
|
{
|
||
|
next_value = 3;
|
||
|
} else if( next_value < 0 )
|
||
|
{
|
||
|
next_value = 0;
|
||
|
}
|
||
|
/* OK, store this value */
|
||
|
compressed[next_bit >> 3] |= swizzle4[ next_value ] << (next_bit & 7);
|
||
|
next_bit += 2;
|
||
|
}
|
||
|
/* done compressing to DXT1 */
|
||
|
}
|
||
|
|
||
|
void
|
||
|
compress_DDS_alpha_block
|
||
|
(
|
||
|
const unsigned char *const uncompressed,
|
||
|
unsigned char compressed[8]
|
||
|
)
|
||
|
{
|
||
|
/* variables */
|
||
|
int i;
|
||
|
int next_bit;
|
||
|
int a0, a1;
|
||
|
float scale_me;
|
||
|
/* stupid order */
|
||
|
int swizzle8[] = { 1, 7, 6, 5, 4, 3, 2, 0 };
|
||
|
/* get the alpha limits (a0 > a1) */
|
||
|
a0 = a1 = uncompressed[3];
|
||
|
for( i = 4+3; i < 16*4; i += 4 )
|
||
|
{
|
||
|
if( uncompressed[i] > a0 )
|
||
|
{
|
||
|
a0 = uncompressed[i];
|
||
|
} else if( uncompressed[i] < a1 )
|
||
|
{
|
||
|
a1 = uncompressed[i];
|
||
|
}
|
||
|
}
|
||
|
/* store those limits, and zero the rest of the compressed dataset */
|
||
|
compressed[0] = a0;
|
||
|
compressed[1] = a1;
|
||
|
/* zero out the compressed data */
|
||
|
compressed[2] = 0;
|
||
|
compressed[3] = 0;
|
||
|
compressed[4] = 0;
|
||
|
compressed[5] = 0;
|
||
|
compressed[6] = 0;
|
||
|
compressed[7] = 0;
|
||
|
/* store the all of the alpha values */
|
||
|
next_bit = 8*2;
|
||
|
scale_me = 7.9999f / (a0 - a1);
|
||
|
for( i = 3; i < 16*4; i += 4 )
|
||
|
{
|
||
|
/* convert this alpha value to a 3 bit number */
|
||
|
int svalue;
|
||
|
int value = (int)((uncompressed[i] - a1) * scale_me);
|
||
|
svalue = swizzle8[ value&7 ];
|
||
|
/* OK, store this value, start with the 1st byte */
|
||
|
compressed[next_bit >> 3] |= svalue << (next_bit & 7);
|
||
|
if( (next_bit & 7) > 5 )
|
||
|
{
|
||
|
/* spans 2 bytes, fill in the start of the 2nd byte */
|
||
|
compressed[1 + (next_bit >> 3)] |= svalue >> (8 - (next_bit & 7) );
|
||
|
}
|
||
|
next_bit += 3;
|
||
|
}
|
||
|
/* done compressing to DXT1 */
|
||
|
}
|