dolphin/Source/Core/VideoCommon/LightingShaderGen.h

246 lines
9.0 KiB
C
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project
2015-05-18 01:08:10 +02:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
#pragma once
#include "Common/Assert.h"
#include "Common/CommonTypes.h"
#include "VideoCommon/NativeVertexFormat.h"
#include "VideoCommon/ShaderGenCommon.h"
#include "VideoCommon/XFMemory.h"
2011-09-29 21:21:09 +02:00
#define LIGHT_COL "%s[%d].color.%s"
#define LIGHT_COL_PARAMS(index, swizzle) (I_LIGHTS), (index), (swizzle)
#define LIGHT_COSATT "%s[%d].cosatt"
#define LIGHT_COSATT_PARAMS(index) (I_LIGHTS), (index)
#define LIGHT_DISTATT "%s[%d].distatt"
#define LIGHT_DISTATT_PARAMS(index) (I_LIGHTS), (index)
#define LIGHT_POS "%s[%d].pos"
#define LIGHT_POS_PARAMS(index) (I_LIGHTS), (index)
#define LIGHT_DIR "%s[%d].dir"
#define LIGHT_DIR_PARAMS(index) (I_LIGHTS), (index)
/**
* Common uid data used for shader generators that use lighting calculations.
*/
struct LightingUidData
{
u32 matsource : 4; // 4x1 bit
u32 enablelighting : 4; // 4x1 bit
u32 ambsource : 4; // 4x1 bit
u32 diffusefunc : 8; // 4x2 bits
u32 attnfunc : 8; // 4x2 bits
u32 light_mask : 32; // 4x8 bits
};
static const char s_lighting_struct[] = "struct Light {\n"
"\tint4 color;\n"
"\tfloat4 cosatt;\n"
"\tfloat4 distatt;\n"
"\tfloat4 pos;\n"
"\tfloat4 dir;\n"
"};\n";
static void GenerateLightShader(ShaderCode& object, const LightingUidData& uid_data, int index,
int litchan_index, bool alpha)
{
const char* swizzle = alpha ? "a" : "rgb";
const char* swizzle_components = (alpha) ? "" : "3";
int attnfunc = (uid_data.attnfunc >> (2 * litchan_index)) & 0x3;
int diffusefunc = (uid_data.diffusefunc >> (2 * litchan_index)) & 0x3;
switch (attnfunc)
{
case LIGHTATTN_NONE:
case LIGHTATTN_DIR:
object.Write("ldir = normalize(" LIGHT_POS ".xyz - pos.xyz);\n", LIGHT_POS_PARAMS(index));
object.Write("attn = 1.0;\n");
object.Write("if (length(ldir) == 0.0)\n\t ldir = _norm0;\n");
break;
case LIGHTATTN_SPEC:
object.Write("ldir = normalize(" LIGHT_POS ".xyz - pos.xyz);\n", LIGHT_POS_PARAMS(index));
object.Write("attn = (dot(_norm0, ldir) >= 0.0) ? max(0.0, dot(_norm0, " LIGHT_DIR
".xyz)) : 0.0;\n",
LIGHT_DIR_PARAMS(index));
object.Write("cosAttn = " LIGHT_COSATT ".xyz;\n", LIGHT_COSATT_PARAMS(index));
object.Write("distAttn = %s(" LIGHT_DISTATT ".xyz);\n",
(diffusefunc == LIGHTDIF_NONE) ? "" : "normalize", LIGHT_DISTATT_PARAMS(index));
object.Write("attn = max(0.0f, dot(cosAttn, float3(1.0, attn, attn*attn))) / dot(distAttn, "
"float3(1.0, attn, attn*attn));\n");
break;
case LIGHTATTN_SPOT:
object.Write("ldir = " LIGHT_POS ".xyz - pos.xyz;\n", LIGHT_POS_PARAMS(index));
object.Write("dist2 = dot(ldir, ldir);\n"
"dist = sqrt(dist2);\n"
"ldir = ldir / dist;\n"
"attn = max(0.0, dot(ldir, " LIGHT_DIR ".xyz));\n",
LIGHT_DIR_PARAMS(index));
// attn*attn may overflow
object.Write("attn = max(0.0, " LIGHT_COSATT ".x + " LIGHT_COSATT ".y*attn + " LIGHT_COSATT
".z*attn*attn) / dot(" LIGHT_DISTATT ".xyz, float3(1.0,dist,dist2));\n",
LIGHT_COSATT_PARAMS(index), LIGHT_COSATT_PARAMS(index), LIGHT_COSATT_PARAMS(index),
LIGHT_DISTATT_PARAMS(index));
break;
}
switch (diffusefunc)
{
case LIGHTDIF_NONE:
object.Write("lacc.%s += int%s(round(attn * float%s(" LIGHT_COL ")));\n", swizzle,
swizzle_components, swizzle_components, LIGHT_COL_PARAMS(index, swizzle));
break;
case LIGHTDIF_SIGN:
case LIGHTDIF_CLAMP:
object.Write("lacc.%s += int%s(round(attn * %sdot(ldir, _norm0)) * float%s(" LIGHT_COL ")));\n",
swizzle, swizzle_components, diffusefunc != LIGHTDIF_SIGN ? "max(0.0," : "(",
swizzle_components, LIGHT_COL_PARAMS(index, swizzle));
break;
default:
_assert_(0);
}
object.Write("\n");
}
// vertex shader
// lights/colors
// materials name is I_MATERIALS in vs and I_PMATERIALS in ps
// inColorName is color in vs and colors_ in ps
// dest is o.colors_ in vs and colors_ in ps
static void GenerateLightingShaderCode(ShaderCode& object, const LightingUidData& uid_data,
int components, const char* inColorName, const char* dest)
{
for (unsigned int j = 0; j < xfmem.numChan.numColorChans; j++)
{
object.Write("{\n");
bool colormatsource = !!(uid_data.matsource & (1 << j));
if (colormatsource) // from vertex
{
if (components & (VB_HAS_COL0 << j))
object.Write("int4 mat = int4(round(%s%d * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0)
object.Write("int4 mat = int4(round(%s0 * 255.0));\n", inColorName);
else
object.Write("int4 mat = int4(255, 255, 255, 255);\n");
}
else // from color
{
object.Write("int4 mat = %s[%d];\n", I_MATERIALS, j + 2);
}
if (uid_data.enablelighting & (1 << j))
{
if (uid_data.ambsource & (1 << j)) // from vertex
{
if (components & (VB_HAS_COL0 << j))
object.Write("lacc = int4(round(%s%d * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0)
object.Write("lacc = int4(round(%s0 * 255.0));\n", inColorName);
else
// TODO: this isn't verified. Here we want to read the ambient from the vertex,
// but the vertex itself has no color. So we don't know which value to read.
// Returning 1.0 is the same as disabled lightning, so this could be fine
object.Write("lacc = int4(255, 255, 255, 255);\n");
}
else // from color
{
object.Write("lacc = %s[%d];\n", I_MATERIALS, j);
}
}
else
{
object.Write("lacc = int4(255, 255, 255, 255);\n");
}
// check if alpha is different
bool alphamatsource = !!(uid_data.matsource & (1 << (j + 2)));
if (alphamatsource != colormatsource)
{
if (alphamatsource) // from vertex
{
if (components & (VB_HAS_COL0 << j))
object.Write("mat.w = int(round(%s%d.w * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0)
object.Write("mat.w = int(round(%s0.w * 255.0));\n", inColorName);
else
object.Write("mat.w = 255;\n");
}
else // from color
{
object.Write("mat.w = %s[%d].w;\n", I_MATERIALS, j + 2);
}
}
if (uid_data.enablelighting & (1 << (j + 2)))
{
if (uid_data.ambsource & (1 << (j + 2))) // from vertex
{
if (components & (VB_HAS_COL0 << j))
object.Write("lacc.w = int(round(%s%d.w * 255.0));\n", inColorName, j);
else if (components & VB_HAS_COL0)
object.Write("lacc.w = int(round(%s0.w * 255.0));\n", inColorName);
else
// TODO: The same for alpha: We want to read from vertex, but the vertex has no color
object.Write("lacc.w = 255;\n");
}
else // from color
{
object.Write("lacc.w = %s[%d].w;\n", I_MATERIALS, j);
}
}
else
{
object.Write("lacc.w = 255;\n");
}
if (uid_data.enablelighting & (1 << j)) // Color lights
{
for (int i = 0; i < 8; ++i)
if (uid_data.light_mask & (1 << (i + 8 * j)))
GenerateLightShader(object, uid_data, i, j, false);
}
if (uid_data.enablelighting & (1 << (j + 2))) // Alpha lights
{
for (int i = 0; i < 8; ++i)
if (uid_data.light_mask & (1 << (i + 8 * (j + 2))))
GenerateLightShader(object, uid_data, i, j + 2, true);
}
object.Write("lacc = clamp(lacc, 0, 255);\n");
object.Write("%s%d = float4((mat * (lacc + (lacc >> 7))) >> 8) / 255.0;\n", dest, j);
object.Write("}\n");
}
}
static void GetLightingShaderUid(LightingUidData& uid_data)
{
for (unsigned int j = 0; j < xfmem.numChan.numColorChans; j++)
{
uid_data.matsource |= xfmem.color[j].matsource << j;
uid_data.matsource |= xfmem.alpha[j].matsource << (j + 2);
uid_data.enablelighting |= xfmem.color[j].enablelighting << j;
uid_data.enablelighting |= xfmem.alpha[j].enablelighting << (j + 2);
if (uid_data.enablelighting & (1 << j)) // Color lights
{
uid_data.ambsource |= xfmem.color[j].ambsource << j;
uid_data.attnfunc |= xfmem.color[j].attnfunc << (2 * j);
uid_data.diffusefunc |= xfmem.color[j].diffusefunc << (2 * j);
uid_data.light_mask |= xfmem.color[j].GetFullLightMask() << (8 * j);
}
if (uid_data.enablelighting & (1 << (j + 2))) // Alpha lights
{
uid_data.ambsource |= xfmem.alpha[j].ambsource << (j + 2);
uid_data.attnfunc |= xfmem.alpha[j].attnfunc << (2 * (j + 2));
uid_data.diffusefunc |= xfmem.alpha[j].diffusefunc << (2 * (j + 2));
uid_data.light_mask |= xfmem.alpha[j].GetFullLightMask() << (8 * (j + 2));
}
}
}