// Copyright 2014 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. #include "VideoCommon/GeometryShaderGen.h" #include #include #include "Common/CommonTypes.h" #include "VideoCommon/DriverDetails.h" #include "VideoCommon/LightingShaderGen.h" #include "VideoCommon/VideoCommon.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" static const char* primitives_ogl[] = {"points", "lines", "triangles"}; static const char* primitives_d3d[] = {"point", "line", "triangle"}; bool geometry_shader_uid_data::IsPassthrough() const { const bool stereo = g_ActiveConfig.iStereoMode > 0; const bool wireframe = g_ActiveConfig.bWireFrame; return primitive_type == PRIMITIVE_TRIANGLES && !stereo && !wireframe; } GeometryShaderUid GetGeometryShaderUid(u32 primitive_type) { ShaderUid out; geometry_shader_uid_data* uid_data = out.GetUidData(); memset(uid_data, 0, sizeof(geometry_shader_uid_data)); uid_data->primitive_type = primitive_type; uid_data->numTexGens = xfmem.numTexGen.numTexGens; return out; } static void EmitVertex(ShaderCode& out, const geometry_shader_uid_data* uid_data, const char* vertex, APIType ApiType, bool wireframe, bool pixel_lighting, bool first_vertex = false); static void EndPrimitive(ShaderCode& out, const geometry_shader_uid_data* uid_data, APIType ApiType, bool wireframe, bool pixel_lighting); ShaderCode GenerateGeometryShaderCode(APIType ApiType, const geometry_shader_uid_data* uid_data) { ShaderCode out; // Non-uid template parameters will write to the dummy data (=> gets optimized out) const bool wireframe = g_ActiveConfig.bWireFrame; const bool pixel_lighting = g_ActiveConfig.bEnablePixelLighting; const bool msaa = g_ActiveConfig.IsMSAAEnabled(); const bool ssaa = g_ActiveConfig.IsSSAAEnabled(); const bool stereo = g_ActiveConfig.IsStereoEnabled(); const unsigned int vertex_in = uid_data->primitive_type + 1; unsigned int vertex_out = uid_data->primitive_type == PRIMITIVE_TRIANGLES ? 3 : 4; if (wireframe) vertex_out++; if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { // Insert layout parameters if (g_ActiveConfig.backend_info.bSupportsGSInstancing) { out.Write("layout(%s, invocations = %d) in;\n", primitives_ogl[uid_data->primitive_type], stereo ? 2 : 1); out.Write("layout(%s_strip, max_vertices = %d) out;\n", wireframe ? "line" : "triangle", vertex_out); } else { out.Write("layout(%s) in;\n", primitives_ogl[uid_data->primitive_type]); out.Write("layout(%s_strip, max_vertices = %d) out;\n", wireframe ? "line" : "triangle", stereo ? vertex_out * 2 : vertex_out); } } out.Write("%s", s_lighting_struct); // uniforms if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) out.Write("UBO_BINDING(std140, 3) uniform GSBlock {\n"); else out.Write("cbuffer GSBlock {\n"); out.Write("\tfloat4 " I_STEREOPARAMS ";\n" "\tfloat4 " I_LINEPTPARAMS ";\n" "\tint4 " I_TEXOFFSET ";\n" "};\n"); out.Write("struct VS_OUTPUT {\n"); GenerateVSOutputMembers(out, ApiType, uid_data->numTexGens, pixel_lighting, ""); out.Write("};\n"); if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { if (g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("#define InstanceID gl_InvocationID\n"); out.Write("VARYING_LOCATION(0) in VertexData {\n"); GenerateVSOutputMembers(out, ApiType, uid_data->numTexGens, pixel_lighting, GetInterpolationQualifier(msaa, ssaa, true, true)); out.Write("} vs[%d];\n", vertex_in); out.Write("VARYING_LOCATION(0) out VertexData {\n"); GenerateVSOutputMembers(out, ApiType, uid_data->numTexGens, pixel_lighting, GetInterpolationQualifier(msaa, ssaa, true, false)); if (stereo) out.Write("\tflat int layer;\n"); out.Write("} ps;\n"); out.Write("void main()\n{\n"); } else // D3D { out.Write("struct VertexData {\n"); out.Write("\tVS_OUTPUT o;\n"); if (stereo) out.Write("\tuint layer : SV_RenderTargetArrayIndex;\n"); out.Write("};\n"); if (g_ActiveConfig.backend_info.bSupportsGSInstancing) { out.Write("[maxvertexcount(%d)]\n[instance(%d)]\n", vertex_out, stereo ? 2 : 1); out.Write("void main(%s VS_OUTPUT o[%d], inout %sStream output, in uint " "InstanceID : SV_GSInstanceID)\n{\n", primitives_d3d[uid_data->primitive_type], vertex_in, wireframe ? "Line" : "Triangle"); } else { out.Write("[maxvertexcount(%d)]\n", stereo ? vertex_out * 2 : vertex_out); out.Write("void main(%s VS_OUTPUT o[%d], inout %sStream output)\n{\n", primitives_d3d[uid_data->primitive_type], vertex_in, wireframe ? "Line" : "Triangle"); } out.Write("\tVertexData ps;\n"); } if (uid_data->primitive_type == PRIMITIVE_LINES) { if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { out.Write("\tVS_OUTPUT start, end;\n"); AssignVSOutputMembers(out, "start", "vs[0]", uid_data->numTexGens, pixel_lighting); AssignVSOutputMembers(out, "end", "vs[1]", uid_data->numTexGens, pixel_lighting); } else { out.Write("\tVS_OUTPUT start = o[0];\n"); out.Write("\tVS_OUTPUT end = o[1];\n"); } // GameCube/Wii's line drawing algorithm is a little quirky. It does not // use the correct line caps. Instead, the line caps are vertical or // horizontal depending the slope of the line. out.Write("\tfloat2 offset;\n" "\tfloat2 to = abs(end.pos.xy / end.pos.w - start.pos.xy / start.pos.w);\n" // FIXME: What does real hardware do when line is at a 45-degree angle? // FIXME: Lines aren't drawn at the correct width. See Twilight Princess map. "\tif (" I_LINEPTPARAMS ".y * to.y > " I_LINEPTPARAMS ".x * to.x) {\n" // Line is more tall. Extend geometry left and right. // Lerp LineWidth/2 from [0..VpWidth] to [-1..1] "\t\toffset = float2(" I_LINEPTPARAMS ".z / " I_LINEPTPARAMS ".x, 0);\n" "\t} else {\n" // Line is more wide. Extend geometry up and down. // Lerp LineWidth/2 from [0..VpHeight] to [1..-1] "\t\toffset = float2(0, -" I_LINEPTPARAMS ".z / " I_LINEPTPARAMS ".y);\n" "\t}\n"); } else if (uid_data->primitive_type == PRIMITIVE_POINTS) { if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { out.Write("\tVS_OUTPUT center;\n"); AssignVSOutputMembers(out, "center", "vs[0]", uid_data->numTexGens, pixel_lighting); } else { out.Write("\tVS_OUTPUT center = o[0];\n"); } // Offset from center to upper right vertex // Lerp PointSize/2 from [0,0..VpWidth,VpHeight] to [-1,1..1,-1] out.Write("\tfloat2 offset = float2(" I_LINEPTPARAMS ".w / " I_LINEPTPARAMS ".x, -" I_LINEPTPARAMS ".w / " I_LINEPTPARAMS ".y) * center.pos.w;\n"); } if (stereo) { // If the GPU supports invocation we don't need a for loop and can simply use the // invocation identifier to determine which layer we're rendering. if (g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("\tint eye = InstanceID;\n"); else out.Write("\tfor (int eye = 0; eye < 2; ++eye) {\n"); } if (wireframe) out.Write("\tVS_OUTPUT first;\n"); out.Write("\tfor (int i = 0; i < %d; ++i) {\n", vertex_in); if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) { out.Write("\tVS_OUTPUT f;\n"); AssignVSOutputMembers(out, "f", "vs[i]", uid_data->numTexGens, pixel_lighting); if (g_ActiveConfig.backend_info.bSupportsDepthClamp && DriverDetails::HasBug(DriverDetails::BUG_BROKEN_CLIP_DISTANCE)) { // On certain GPUs we have to consume the clip distance from the vertex shader // or else the other vertex shader outputs will get corrupted. out.Write("\tf.clipDist0 = gl_in[i].gl_ClipDistance[0];\n"); out.Write("\tf.clipDist1 = gl_in[i].gl_ClipDistance[1];\n"); } } else { out.Write("\tVS_OUTPUT f = o[i];\n"); } if (stereo) { // Select the output layer out.Write("\tps.layer = eye;\n"); if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) out.Write("\tgl_Layer = eye;\n"); // For stereoscopy add a small horizontal offset in Normalized Device Coordinates proportional // to the depth of the vertex. We retrieve the depth value from the w-component of the projected // vertex which contains the negated z-component of the original vertex. // For negative parallax (out-of-screen effects) we subtract a convergence value from // the depth value. This results in objects at a distance smaller than the convergence // distance to seemingly appear in front of the screen. // This formula is based on page 13 of the "Nvidia 3D Vision Automatic, Best Practices Guide" out.Write("\tfloat hoffset = (eye == 0) ? " I_STEREOPARAMS ".x : " I_STEREOPARAMS ".y;\n"); out.Write("\tf.pos.x += hoffset * (f.pos.w - " I_STEREOPARAMS ".z);\n"); } if (uid_data->primitive_type == PRIMITIVE_LINES) { out.Write("\tVS_OUTPUT l = f;\n" "\tVS_OUTPUT r = f;\n"); out.Write("\tl.pos.xy -= offset * l.pos.w;\n" "\tr.pos.xy += offset * r.pos.w;\n"); out.Write("\tif (" I_TEXOFFSET "[2] != 0) {\n"); out.Write("\tfloat texOffset = 1.0 / float(" I_TEXOFFSET "[2]);\n"); for (unsigned int i = 0; i < uid_data->numTexGens; ++i) { out.Write("\tif (((" I_TEXOFFSET "[0] >> %d) & 0x1) != 0)\n", i); out.Write("\t\tr.tex%d.x += texOffset;\n", i); } out.Write("\t}\n"); EmitVertex(out, uid_data, "l", ApiType, wireframe, pixel_lighting, true); EmitVertex(out, uid_data, "r", ApiType, wireframe, pixel_lighting); } else if (uid_data->primitive_type == PRIMITIVE_POINTS) { out.Write("\tVS_OUTPUT ll = f;\n" "\tVS_OUTPUT lr = f;\n" "\tVS_OUTPUT ul = f;\n" "\tVS_OUTPUT ur = f;\n"); out.Write("\tll.pos.xy += float2(-1,-1) * offset;\n" "\tlr.pos.xy += float2(1,-1) * offset;\n" "\tul.pos.xy += float2(-1,1) * offset;\n" "\tur.pos.xy += offset;\n"); out.Write("\tif (" I_TEXOFFSET "[3] != 0) {\n"); out.Write("\tfloat2 texOffset = float2(1.0 / float(" I_TEXOFFSET "[3]), 1.0 / float(" I_TEXOFFSET "[3]));\n"); for (unsigned int i = 0; i < uid_data->numTexGens; ++i) { out.Write("\tif (((" I_TEXOFFSET "[1] >> %d) & 0x1) != 0) {\n", i); out.Write("\t\tul.tex%d.xy += float2(0,1) * texOffset;\n", i); out.Write("\t\tur.tex%d.xy += texOffset;\n", i); out.Write("\t\tlr.tex%d.xy += float2(1,0) * texOffset;\n", i); out.Write("\t}\n"); } out.Write("\t}\n"); EmitVertex(out, uid_data, "ll", ApiType, wireframe, pixel_lighting, true); EmitVertex(out, uid_data, "lr", ApiType, wireframe, pixel_lighting); EmitVertex(out, uid_data, "ul", ApiType, wireframe, pixel_lighting); EmitVertex(out, uid_data, "ur", ApiType, wireframe, pixel_lighting); } else { EmitVertex(out, uid_data, "f", ApiType, wireframe, pixel_lighting, true); } out.Write("\t}\n"); EndPrimitive(out, uid_data, ApiType, wireframe, pixel_lighting); if (stereo && !g_ActiveConfig.backend_info.bSupportsGSInstancing) out.Write("\t}\n"); out.Write("}\n"); return out; } static void EmitVertex(ShaderCode& out, const geometry_shader_uid_data* uid_data, const char* vertex, APIType ApiType, bool wireframe, bool pixel_lighting, bool first_vertex) { if (wireframe && first_vertex) out.Write("\tif (i == 0) first = %s;\n", vertex); if (ApiType == APIType::OpenGL) { out.Write("\tgl_Position = %s.pos;\n", vertex); if (g_ActiveConfig.backend_info.bSupportsDepthClamp) { out.Write("\tgl_ClipDistance[0] = %s.clipDist0;\n", vertex); out.Write("\tgl_ClipDistance[1] = %s.clipDist1;\n", vertex); } AssignVSOutputMembers(out, "ps", vertex, uid_data->numTexGens, pixel_lighting); } else if (ApiType == APIType::Vulkan) { // Vulkan NDC space has Y pointing down (right-handed NDC space). out.Write("\tgl_Position = %s.pos;\n", vertex); out.Write("\tgl_Position.y = -gl_Position.y;\n"); AssignVSOutputMembers(out, "ps", vertex, uid_data->numTexGens, pixel_lighting); } else { out.Write("\tps.o = %s;\n", vertex); } if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) out.Write("\tEmitVertex();\n"); else out.Write("\toutput.Append(ps);\n"); } static void EndPrimitive(ShaderCode& out, const geometry_shader_uid_data* uid_data, APIType ApiType, bool wireframe, bool pixel_lighting) { if (wireframe) EmitVertex(out, uid_data, "first", ApiType, wireframe, pixel_lighting); if (ApiType == APIType::OpenGL || ApiType == APIType::Vulkan) out.Write("\tEndPrimitive();\n"); else out.Write("\toutput.RestartStrip();\n"); }