// Copyright 2010 Dolphin Emulator Project // Licensed under GPLv2+ // Refer to the license.txt file included. // --------------------------------------------------------------------------------------------- // GC graphics pipeline // --------------------------------------------------------------------------------------------- // 3d commands are issued through the fifo. The GPU draws to the 2MB EFB. // The efb can be copied back into ram in two forms: as textures or as XFB. // The XFB is the region in RAM that the VI chip scans out to the television. // So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM. // Next frame, that one is scanned out and the other one gets the copy. = double buffering. // --------------------------------------------------------------------------------------------- #include #include #include #include #include #include "Common/CommonTypes.h" #include "Common/Event.h" #include "Common/FileUtil.h" #include "Common/Flag.h" #include "Common/Profiler.h" #include "Common/StringUtil.h" #include "Common/Timer.h" #include "Core/ConfigManager.h" #include "Core/Core.h" #include "Core/FifoPlayer/FifoRecorder.h" #include "Core/HW/VideoInterface.h" #include "Core/Host.h" #include "Core/Movie.h" #include "OnScreenDisplay.h" #include "VideoCommon/AVIDump.h" #include "VideoCommon/BPMemory.h" #include "VideoCommon/CPMemory.h" #include "VideoCommon/CommandProcessor.h" #include "VideoCommon/Debugger.h" #include "VideoCommon/FPSCounter.h" #include "VideoCommon/FramebufferManagerBase.h" #include "VideoCommon/ImageWrite.h" #include "VideoCommon/PostProcessing.h" #include "VideoCommon/RenderBase.h" #include "VideoCommon/Statistics.h" #include "VideoCommon/TextureCacheBase.h" #include "VideoCommon/VideoConfig.h" #include "VideoCommon/XFMemory.h" // TODO: Move these out of here. int frameCount; std::unique_ptr g_renderer; std::mutex Renderer::s_criticalScreenshot; std::string Renderer::s_sScreenshotName; Common::Event Renderer::s_screenshotCompleted; volatile bool Renderer::s_bScreenshot; // The framebuffer size int Renderer::s_target_width; int Renderer::s_target_height; // TODO: Add functionality to reinit all the render targets when the window is resized. int Renderer::s_backbuffer_width; int Renderer::s_backbuffer_height; std::unique_ptr Renderer::m_post_processor; // Final surface changing Common::Flag Renderer::s_surface_needs_change; Common::Event Renderer::s_surface_changed; void* Renderer::s_new_surface_handle; TargetRectangle Renderer::target_rc; int Renderer::s_last_efb_scale; bool Renderer::XFBWrited; PEControl::PixelFormat Renderer::prev_efb_format = PEControl::INVALID_FMT; unsigned int Renderer::efb_scale_numeratorX = 1; unsigned int Renderer::efb_scale_numeratorY = 1; unsigned int Renderer::efb_scale_denominatorX = 1; unsigned int Renderer::efb_scale_denominatorY = 1; // The maximum depth that is written to the depth buffer should never exceed this value. // This is necessary because we use a 2^24 divisor for all our depth values to prevent // floating-point round-trip errors. However the console GPU doesn't ever write a value // to the depth buffer that exceeds 2^24 - 1. const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f; static float AspectToWidescreen(float aspect) { return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f)); } Renderer::Renderer() { UpdateActiveConfig(); TextureCacheBase::OnConfigChanged(g_ActiveConfig); } Renderer::~Renderer() { // invalidate previous efb format prev_efb_format = PEControl::INVALID_FMT; efb_scale_numeratorX = efb_scale_numeratorY = efb_scale_denominatorX = efb_scale_denominatorY = 1; #if defined(HAVE_LIBAV) || defined(_WIN32) // Stop frame dumping if it was left enabled at shutdown time. if (m_AVI_dumping) { AVIDump::Stop(); m_AVI_dumping = false; } #endif } void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight, float Gamma) { CheckFifoRecording(); if (!fbStride || !fbHeight) return; XFBWrited = true; if (g_ActiveConfig.bUseXFB) { FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma); } else { // below div two to convert from bytes to pixels - it expects width, not stride Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, Gamma); } } int Renderer::EFBToScaledX(int x) { switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: // fractional return FramebufferManagerBase::ScaleToVirtualXfbWidth(x); default: return x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX; }; } int Renderer::EFBToScaledY(int y) { switch (g_ActiveConfig.iEFBScale) { case SCALE_AUTO: // fractional return FramebufferManagerBase::ScaleToVirtualXfbHeight(y); default: return y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY; }; } void Renderer::CalculateTargetScale(int x, int y, int* scaledX, int* scaledY) { if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL) { *scaledX = x; *scaledY = y; } else { *scaledX = x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX; *scaledY = y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY; } } // return true if target size changed bool Renderer::CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height) { int newEFBWidth, newEFBHeight; newEFBWidth = newEFBHeight = 0; // TODO: Ugly. Clean up switch (s_last_efb_scale) { case SCALE_AUTO: case SCALE_AUTO_INTEGRAL: newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH); newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT); if (s_last_efb_scale == SCALE_AUTO_INTEGRAL) { efb_scale_numeratorX = efb_scale_numeratorY = std::max((newEFBWidth - 1) / EFB_WIDTH + 1, (newEFBHeight - 1) / EFB_HEIGHT + 1); efb_scale_denominatorX = efb_scale_denominatorY = 1; newEFBWidth = EFBToScaledX(EFB_WIDTH); newEFBHeight = EFBToScaledY(EFB_HEIGHT); } else { efb_scale_numeratorX = newEFBWidth; efb_scale_denominatorX = EFB_WIDTH; efb_scale_numeratorY = newEFBHeight; efb_scale_denominatorY = EFB_HEIGHT; } break; case SCALE_1X: efb_scale_numeratorX = efb_scale_numeratorY = 1; efb_scale_denominatorX = efb_scale_denominatorY = 1; break; case SCALE_1_5X: efb_scale_numeratorX = efb_scale_numeratorY = 3; efb_scale_denominatorX = efb_scale_denominatorY = 2; break; case SCALE_2X: efb_scale_numeratorX = efb_scale_numeratorY = 2; efb_scale_denominatorX = efb_scale_denominatorY = 1; break; case SCALE_2_5X: efb_scale_numeratorX = efb_scale_numeratorY = 5; efb_scale_denominatorX = efb_scale_denominatorY = 2; break; default: efb_scale_numeratorX = efb_scale_numeratorY = s_last_efb_scale - 3; efb_scale_denominatorX = efb_scale_denominatorY = 1; const u32 max_size = GetMaxTextureSize(); if (max_size < EFB_WIDTH * efb_scale_numeratorX / efb_scale_denominatorX) { efb_scale_numeratorX = efb_scale_numeratorY = (max_size / EFB_WIDTH); efb_scale_denominatorX = efb_scale_denominatorY = 1; } break; } if (s_last_efb_scale > SCALE_AUTO_INTEGRAL) CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, &newEFBWidth, &newEFBHeight); if (newEFBWidth != s_target_width || newEFBHeight != s_target_height) { s_target_width = newEFBWidth; s_target_height = newEFBHeight; return true; } return false; } void Renderer::ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc, TargetRectangle& rightRc) { // Resize target to half its original size TargetRectangle drawRc = rc; if (g_ActiveConfig.iStereoMode == STEREO_TAB) { // The height may be negative due to flipped rectangles int height = rc.bottom - rc.top; drawRc.top += height / 4; drawRc.bottom -= height / 4; } else { int width = rc.right - rc.left; drawRc.left += width / 4; drawRc.right -= width / 4; } // Create two target rectangle offset to the sides of the backbuffer leftRc = drawRc, rightRc = drawRc; if (g_ActiveConfig.iStereoMode == STEREO_TAB) { leftRc.top -= s_backbuffer_height / 4; leftRc.bottom -= s_backbuffer_height / 4; rightRc.top += s_backbuffer_height / 4; rightRc.bottom += s_backbuffer_height / 4; } else { leftRc.left -= s_backbuffer_width / 4; leftRc.right -= s_backbuffer_width / 4; rightRc.left += s_backbuffer_width / 4; rightRc.right += s_backbuffer_width / 4; } } void Renderer::SetScreenshot(const std::string& filename) { std::lock_guard lk(s_criticalScreenshot); s_sScreenshotName = filename; s_bScreenshot = true; } void Renderer::DrawDebugText() { auto draw_text = [](OSD::MessageType type, const std::string& message) { OSD::AddTypedMessage(type, message, OSD::Duration::SHORT, OSD::Color::CYAN); }; if (g_ActiveConfig.bShowFPS) { draw_text(OSD::MessageType::FPS, StringFromFormat("FPS: %u", g_renderer->m_fps_counter.GetFPS())); } if (SConfig::GetInstance().m_ShowFrameCount) { draw_text(OSD::MessageType::FrameCount, StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame())); if (Movie::IsPlayingInput()) { draw_text(OSD::MessageType::MovieInputCount, StringFromFormat("Input: %" PRIu64 " / %" PRIu64, Movie::GetCurrentInputCount(), Movie::GetTotalInputCount())); } } if (SConfig::GetInstance().m_ShowLag) { draw_text(OSD::MessageType::MovieLag, StringFromFormat("Lag: %" PRIu64, Movie::GetCurrentLagCount())); } if (SConfig::GetInstance().m_ShowInputDisplay) { draw_text(OSD::MessageType::MovieInput, Movie::GetInputDisplay()); } if (SConfig::GetInstance().m_ShowRTC) { draw_text(OSD::MessageType::RTC, Movie::GetRTCDisplay()); } } void Renderer::UpdateDrawRectangle(int backbuffer_width, int backbuffer_height) { float FloatGLWidth = (float)backbuffer_width; float FloatGLHeight = (float)backbuffer_height; float FloatXOffset = 0; float FloatYOffset = 0; // The rendering window size const float WinWidth = FloatGLWidth; const float WinHeight = FloatGLHeight; // Update aspect ratio hack values // Won't take effect until next frame // Don't know if there is a better place for this code so there isn't a 1 frame delay if (g_ActiveConfig.bWidescreenHack) { float source_aspect = VideoInterface::GetAspectRatio(); if (Core::g_aspect_wide) source_aspect = AspectToWidescreen(source_aspect); float target_aspect; switch (g_ActiveConfig.iAspectRatio) { case ASPECT_STRETCH: target_aspect = WinWidth / WinHeight; break; case ASPECT_ANALOG: target_aspect = VideoInterface::GetAspectRatio(); break; case ASPECT_ANALOG_WIDE: target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio()); break; default: // ASPECT_AUTO target_aspect = source_aspect; break; } float adjust = source_aspect / target_aspect; if (adjust > 1) { // Vert+ g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1 / adjust; } else { // Hor+ g_Config.fAspectRatioHackW = adjust; g_Config.fAspectRatioHackH = 1; } } else { // Hack is disabled g_Config.fAspectRatioHackW = 1; g_Config.fAspectRatioHackH = 1; } // Check for force-settings and override. // The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio float Ratio; if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE || (g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide)) { Ratio = (WinWidth / WinHeight) / AspectToWidescreen(VideoInterface::GetAspectRatio()); } else { Ratio = (WinWidth / WinHeight) / VideoInterface::GetAspectRatio(); } if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH) { if (Ratio > 1.0f) { // Scale down and center in the X direction. FloatGLWidth /= Ratio; FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f; } // The window is too high, we have to limit the height else { // Scale down and center in the Y direction. FloatGLHeight *= Ratio; FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f; } } // ----------------------------------------------------------------------- // Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9. // Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset // ------------------ if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop) { Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio(); if (Ratio <= 1.0f) { Ratio = 1.0f / Ratio; } // The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is // adjusted) float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth; float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight; // The new width and height FloatGLWidth = FloatGLWidth * Ratio; FloatGLHeight = FloatGLHeight * Ratio; // Adjust the X and Y offset FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f); FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f); } int XOffset = (int)(FloatXOffset + 0.5f); int YOffset = (int)(FloatYOffset + 0.5f); int iWhidth = (int)ceil(FloatGLWidth); int iHeight = (int)ceil(FloatGLHeight); iWhidth -= iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders iHeight -= iHeight % 4; target_rc.left = XOffset; target_rc.top = YOffset; target_rc.right = XOffset + iWhidth; target_rc.bottom = YOffset + iHeight; } void Renderer::SetWindowSize(int width, int height) { if (width < 1) width = 1; if (height < 1) height = 1; // Scale the window size by the EFB scale. CalculateTargetScale(width, height, &width, &height); Host_RequestRenderWindowSize(width, height); } void Renderer::CheckFifoRecording() { bool wasRecording = g_bRecordFifoData; g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording(); if (g_bRecordFifoData) { if (!wasRecording) { RecordVideoMemory(); } FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase, CommandProcessor::fifo.CPEnd); } } void Renderer::RecordVideoMemory() { const u32* bpmem_ptr = reinterpret_cast(&bpmem); u32 cpmem[256] = {}; // The FIFO recording format splits XF memory into xfmem and xfregs; follow // that split here. const u32* xfmem_ptr = reinterpret_cast(&xfmem); const u32* xfregs_ptr = reinterpret_cast(&xfmem) + FifoDataFile::XF_MEM_SIZE; u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE; FillCPMemoryArray(cpmem); FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size); } void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc, float Gamma) { // TODO: merge more generic parts into VideoCommon g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, Gamma); if (XFBWrited) g_renderer->m_fps_counter.Update(); frameCount++; GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true); // Begin new frame // Set default viewport and scissor, for the clear to work correctly // New frame stats.ResetFrame(); Core::Callback_VideoCopiedToXFB(XFBWrited || (g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB)); XFBWrited = false; } bool Renderer::IsFrameDumping() { if (s_bScreenshot) return true; #if defined(HAVE_LIBAV) || defined(_WIN32) if (SConfig::GetInstance().m_DumpFrames) return true; if (m_last_frame_dumped && m_AVI_dumping) { AVIDump::Stop(); std::vector().swap(m_frame_data); m_AVI_dumping = false; OSD::AddMessage("Stop dumping frames", 2000); } m_last_frame_dumped = false; #endif return false; } void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, bool swap_upside_down) { if (w == 0 || h == 0) return; // TODO: Refactor this. Right now it's needed for the implace flipping of the image. m_frame_data.assign(data, data + stride * h); if (swap_upside_down) FlipImageData(m_frame_data.data(), w, h, 4); // Save screenshot if (s_bScreenshot) { std::lock_guard lk(s_criticalScreenshot); if (TextureToPng(m_frame_data.data(), stride, s_sScreenshotName, w, h, false)) OSD::AddMessage("Screenshot saved to " + s_sScreenshotName); // Reset settings s_sScreenshotName.clear(); s_bScreenshot = false; s_screenshotCompleted.Set(); } #if defined(HAVE_LIBAV) || defined(_WIN32) if (SConfig::GetInstance().m_DumpFrames) { if (!m_last_frame_dumped) { m_AVI_dumping = AVIDump::Start(w, h); if (!m_AVI_dumping) { OSD::AddMessage("AVIDump Start failed", 2000); } else { OSD::AddMessage(StringFromFormat("Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)", File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), w, h), 2000); } } if (m_AVI_dumping) { AVIDump::AddFrame(m_frame_data.data(), w, h, stride); } m_last_frame_dumped = true; } #endif } void Renderer::FinishFrameData() { } void Renderer::FlipImageData(u8* data, int w, int h, int pixel_width) { for (int y = 0; y < h / 2; ++y) { for (int x = 0; x < w; ++x) { for (int delta = 0; delta < pixel_width; ++delta) std::swap(data[(y * w + x) * pixel_width + delta], data[((h - 1 - y) * w + x) * pixel_width + delta]); } } }