mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2024-12-27 07:44:29 +01:00
7b9375875c
Also cleaned up its source code to support only 5.1 and 7.1 setups.
445 lines
12 KiB
C++
445 lines
12 KiB
C++
/*
|
|
Copyright (c) 2003-2010, Mark Borgerding
|
|
|
|
All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without modification,
|
|
are permitted
|
|
provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions
|
|
and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above copyright notice,
|
|
this list of
|
|
conditions and the following disclaimer in the documentation and/or other
|
|
materials provided with
|
|
the distribution.
|
|
* Neither the author nor the names of any contributors may be used to
|
|
endorse or promote
|
|
products derived from this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR
|
|
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND
|
|
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR
|
|
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
LIABILITY, WHETHER
|
|
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF
|
|
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include "FreeSurround/_KissFFTGuts.h"
|
|
/* The guts header contains all the multiplication and addition macros that are
|
|
defined for
|
|
fixed or floating point complex numbers. It also delares the kf_ internal
|
|
functions.
|
|
*/
|
|
|
|
static void kf_bfly2(kiss_fft_cpx *Fout, const size_t fstride,
|
|
const kiss_fft_cfg st, int m) {
|
|
kiss_fft_cpx *Fout2;
|
|
kiss_fft_cpx *tw1 = st->twiddles;
|
|
kiss_fft_cpx t;
|
|
Fout2 = Fout + m;
|
|
do {
|
|
C_FIXDIV(*Fout, 2);
|
|
C_FIXDIV(*Fout2, 2);
|
|
|
|
C_MUL(t, *Fout2, *tw1);
|
|
tw1 += fstride;
|
|
C_SUB(*Fout2, *Fout, t);
|
|
C_ADDTO(*Fout, t);
|
|
++Fout2;
|
|
++Fout;
|
|
} while (--m);
|
|
}
|
|
|
|
static void kf_bfly4(kiss_fft_cpx *Fout, const size_t fstride,
|
|
const kiss_fft_cfg st, const size_t m) {
|
|
kiss_fft_cpx *tw1, *tw2, *tw3;
|
|
kiss_fft_cpx scratch[6];
|
|
size_t k = m;
|
|
const size_t m2 = 2 * m;
|
|
const size_t m3 = 3 * m;
|
|
|
|
tw3 = tw2 = tw1 = st->twiddles;
|
|
|
|
do {
|
|
C_FIXDIV(*Fout, 4);
|
|
C_FIXDIV(Fout[m], 4);
|
|
C_FIXDIV(Fout[m2], 4);
|
|
C_FIXDIV(Fout[m3], 4);
|
|
|
|
C_MUL(scratch[0], Fout[m], *tw1);
|
|
C_MUL(scratch[1], Fout[m2], *tw2);
|
|
C_MUL(scratch[2], Fout[m3], *tw3);
|
|
|
|
C_SUB(scratch[5], *Fout, scratch[1]);
|
|
C_ADDTO(*Fout, scratch[1]);
|
|
C_ADD(scratch[3], scratch[0], scratch[2]);
|
|
C_SUB(scratch[4], scratch[0], scratch[2]);
|
|
C_SUB(Fout[m2], *Fout, scratch[3]);
|
|
tw1 += fstride;
|
|
tw2 += fstride * 2;
|
|
tw3 += fstride * 3;
|
|
C_ADDTO(*Fout, scratch[3]);
|
|
|
|
if (st->inverse) {
|
|
Fout[m].r = scratch[5].r - scratch[4].i;
|
|
Fout[m].i = scratch[5].i + scratch[4].r;
|
|
Fout[m3].r = scratch[5].r + scratch[4].i;
|
|
Fout[m3].i = scratch[5].i - scratch[4].r;
|
|
} else {
|
|
Fout[m].r = scratch[5].r + scratch[4].i;
|
|
Fout[m].i = scratch[5].i - scratch[4].r;
|
|
Fout[m3].r = scratch[5].r - scratch[4].i;
|
|
Fout[m3].i = scratch[5].i + scratch[4].r;
|
|
}
|
|
++Fout;
|
|
} while (--k);
|
|
}
|
|
|
|
static void kf_bfly3(kiss_fft_cpx *Fout, const size_t fstride,
|
|
const kiss_fft_cfg st, size_t m) {
|
|
size_t k = m;
|
|
const size_t m2 = 2 * m;
|
|
kiss_fft_cpx *tw1, *tw2;
|
|
kiss_fft_cpx scratch[5];
|
|
kiss_fft_cpx epi3;
|
|
epi3 = st->twiddles[fstride * m];
|
|
|
|
tw1 = tw2 = st->twiddles;
|
|
|
|
do {
|
|
C_FIXDIV(*Fout, 3);
|
|
C_FIXDIV(Fout[m], 3);
|
|
C_FIXDIV(Fout[m2], 3);
|
|
|
|
C_MUL(scratch[1], Fout[m], *tw1);
|
|
C_MUL(scratch[2], Fout[m2], *tw2);
|
|
|
|
C_ADD(scratch[3], scratch[1], scratch[2]);
|
|
C_SUB(scratch[0], scratch[1], scratch[2]);
|
|
tw1 += fstride;
|
|
tw2 += fstride * 2;
|
|
|
|
Fout[m].r = Fout->r - HALF_OF(scratch[3].r);
|
|
Fout[m].i = Fout->i - HALF_OF(scratch[3].i);
|
|
|
|
C_MULBYSCALAR(scratch[0], epi3.i);
|
|
|
|
C_ADDTO(*Fout, scratch[3]);
|
|
|
|
Fout[m2].r = Fout[m].r + scratch[0].i;
|
|
Fout[m2].i = Fout[m].i - scratch[0].r;
|
|
|
|
Fout[m].r -= scratch[0].i;
|
|
Fout[m].i += scratch[0].r;
|
|
|
|
++Fout;
|
|
} while (--k);
|
|
}
|
|
|
|
static void kf_bfly5(kiss_fft_cpx *Fout, const size_t fstride,
|
|
const kiss_fft_cfg st, int m) {
|
|
kiss_fft_cpx *Fout0, *Fout1, *Fout2, *Fout3, *Fout4;
|
|
int u;
|
|
kiss_fft_cpx scratch[13];
|
|
kiss_fft_cpx *twiddles = st->twiddles;
|
|
kiss_fft_cpx *tw;
|
|
kiss_fft_cpx ya, yb;
|
|
ya = twiddles[fstride * m];
|
|
yb = twiddles[fstride * 2 * m];
|
|
|
|
Fout0 = Fout;
|
|
Fout1 = Fout0 + m;
|
|
Fout2 = Fout0 + 2 * m;
|
|
Fout3 = Fout0 + 3 * m;
|
|
Fout4 = Fout0 + 4 * m;
|
|
|
|
tw = st->twiddles;
|
|
for (u = 0; u < m; ++u) {
|
|
C_FIXDIV(*Fout0, 5);
|
|
C_FIXDIV(*Fout1, 5);
|
|
C_FIXDIV(*Fout2, 5);
|
|
C_FIXDIV(*Fout3, 5);
|
|
C_FIXDIV(*Fout4, 5);
|
|
scratch[0] = *Fout0;
|
|
|
|
C_MUL(scratch[1], *Fout1, tw[u * fstride]);
|
|
C_MUL(scratch[2], *Fout2, tw[2 * u * fstride]);
|
|
C_MUL(scratch[3], *Fout3, tw[3 * u * fstride]);
|
|
C_MUL(scratch[4], *Fout4, tw[4 * u * fstride]);
|
|
|
|
C_ADD(scratch[7], scratch[1], scratch[4]);
|
|
C_SUB(scratch[10], scratch[1], scratch[4]);
|
|
C_ADD(scratch[8], scratch[2], scratch[3]);
|
|
C_SUB(scratch[9], scratch[2], scratch[3]);
|
|
|
|
Fout0->r += scratch[7].r + scratch[8].r;
|
|
Fout0->i += scratch[7].i + scratch[8].i;
|
|
|
|
scratch[5].r =
|
|
scratch[0].r + S_MUL(scratch[7].r, ya.r) + S_MUL(scratch[8].r, yb.r);
|
|
scratch[5].i =
|
|
scratch[0].i + S_MUL(scratch[7].i, ya.r) + S_MUL(scratch[8].i, yb.r);
|
|
|
|
scratch[6].r = S_MUL(scratch[10].i, ya.i) + S_MUL(scratch[9].i, yb.i);
|
|
scratch[6].i = -S_MUL(scratch[10].r, ya.i) - S_MUL(scratch[9].r, yb.i);
|
|
|
|
C_SUB(*Fout1, scratch[5], scratch[6]);
|
|
C_ADD(*Fout4, scratch[5], scratch[6]);
|
|
|
|
scratch[11].r =
|
|
scratch[0].r + S_MUL(scratch[7].r, yb.r) + S_MUL(scratch[8].r, ya.r);
|
|
scratch[11].i =
|
|
scratch[0].i + S_MUL(scratch[7].i, yb.r) + S_MUL(scratch[8].i, ya.r);
|
|
scratch[12].r = -S_MUL(scratch[10].i, yb.i) + S_MUL(scratch[9].i, ya.i);
|
|
scratch[12].i = S_MUL(scratch[10].r, yb.i) - S_MUL(scratch[9].r, ya.i);
|
|
|
|
C_ADD(*Fout2, scratch[11], scratch[12]);
|
|
C_SUB(*Fout3, scratch[11], scratch[12]);
|
|
|
|
++Fout0;
|
|
++Fout1;
|
|
++Fout2;
|
|
++Fout3;
|
|
++Fout4;
|
|
}
|
|
}
|
|
|
|
/* perform the butterfly for one stage of a mixed radix FFT */
|
|
static void kf_bfly_generic(kiss_fft_cpx *Fout, const size_t fstride,
|
|
const kiss_fft_cfg st, int m, int p) {
|
|
int u, k, q1, q;
|
|
kiss_fft_cpx *twiddles = st->twiddles;
|
|
kiss_fft_cpx t;
|
|
int Norig = st->nfft;
|
|
|
|
kiss_fft_cpx *scratch =
|
|
(kiss_fft_cpx *)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx) * p);
|
|
|
|
for (u = 0; u < m; ++u) {
|
|
k = u;
|
|
for (q1 = 0; q1 < p; ++q1) {
|
|
scratch[q1] = Fout[k];
|
|
C_FIXDIV(scratch[q1], p);
|
|
k += m;
|
|
}
|
|
|
|
k = u;
|
|
for (q1 = 0; q1 < p; ++q1) {
|
|
int twidx = 0;
|
|
Fout[k] = scratch[0];
|
|
for (q = 1; q < p; ++q) {
|
|
twidx += static_cast<int>(fstride) * k;
|
|
if (twidx >= Norig)
|
|
twidx -= Norig;
|
|
C_MUL(t, scratch[q], twiddles[twidx]);
|
|
C_ADDTO(Fout[k], t);
|
|
}
|
|
k += m;
|
|
}
|
|
}
|
|
KISS_FFT_TMP_FREE(scratch);
|
|
}
|
|
|
|
static void kf_work(kiss_fft_cpx *Fout, const kiss_fft_cpx *f,
|
|
const size_t fstride, int in_stride, int *factors,
|
|
const kiss_fft_cfg st) {
|
|
kiss_fft_cpx *Fout_beg = Fout;
|
|
const int p = *factors++; /* the radix */
|
|
const int m = *factors++; /* stage's fft length/p */
|
|
const kiss_fft_cpx *Fout_end = Fout + p * m;
|
|
|
|
#ifdef _OPENMP
|
|
// use openmp extensions at the
|
|
// top-level (not recursive)
|
|
if (fstride == 1 && p <= 5) {
|
|
int k;
|
|
|
|
// execute the p different work units in different threads
|
|
#pragma omp parallel for
|
|
for (k = 0; k < p; ++k)
|
|
kf_work(Fout + k * m, f + fstride * in_stride * k, fstride * p, in_stride,
|
|
factors, st);
|
|
// all threads have joined by this point
|
|
|
|
switch (p) {
|
|
case 2:
|
|
kf_bfly2(Fout, fstride, st, m);
|
|
break;
|
|
case 3:
|
|
kf_bfly3(Fout, fstride, st, m);
|
|
break;
|
|
case 4:
|
|
kf_bfly4(Fout, fstride, st, m);
|
|
break;
|
|
case 5:
|
|
kf_bfly5(Fout, fstride, st, m);
|
|
break;
|
|
default:
|
|
kf_bfly_generic(Fout, fstride, st, m, p);
|
|
break;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (m == 1) {
|
|
do {
|
|
*Fout = *f;
|
|
f += fstride * in_stride;
|
|
} while (++Fout != Fout_end);
|
|
} else {
|
|
do {
|
|
// recursive call:
|
|
// DFT of size m*p performed by doing
|
|
// p instances of smaller DFTs of size m,
|
|
// each one takes a decimated version of the input
|
|
kf_work(Fout, f, fstride * p, in_stride, factors, st);
|
|
f += fstride * in_stride;
|
|
} while ((Fout += m) != Fout_end);
|
|
}
|
|
|
|
Fout = Fout_beg;
|
|
|
|
// recombine the p smaller DFTs
|
|
switch (p) {
|
|
case 2:
|
|
kf_bfly2(Fout, fstride, st, m);
|
|
break;
|
|
case 3:
|
|
kf_bfly3(Fout, fstride, st, m);
|
|
break;
|
|
case 4:
|
|
kf_bfly4(Fout, fstride, st, m);
|
|
break;
|
|
case 5:
|
|
kf_bfly5(Fout, fstride, st, m);
|
|
break;
|
|
default:
|
|
kf_bfly_generic(Fout, fstride, st, m, p);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* facbuf is populated by p1,m1,p2,m2, ...
|
|
where
|
|
p[i] * m[i] = m[i-1]
|
|
m0 = n */
|
|
static void kf_factor(int n, int *facbuf) {
|
|
int p = 4;
|
|
double floor_sqrt;
|
|
floor_sqrt = floor(sqrt((double)n));
|
|
|
|
/*factor out powers of 4, powers of 2, then any remaining primes */
|
|
do {
|
|
while (n % p) {
|
|
switch (p) {
|
|
case 4:
|
|
p = 2;
|
|
break;
|
|
case 2:
|
|
p = 3;
|
|
break;
|
|
default:
|
|
p += 2;
|
|
break;
|
|
}
|
|
if (p > floor_sqrt)
|
|
p = n; /* no more factors, skip to end */
|
|
}
|
|
n /= p;
|
|
*facbuf++ = p;
|
|
*facbuf++ = n;
|
|
} while (n > 1);
|
|
}
|
|
|
|
/*
|
|
*
|
|
* User-callable function to allocate all necessary storage space for the fft.
|
|
*
|
|
* The return value is a contiguous block of memory, allocated with malloc. As
|
|
* such,
|
|
* It can be freed with free(), rather than a kiss_fft-specific function.
|
|
* */
|
|
kiss_fft_cfg kiss_fft_alloc(int nfft, int inverse_fft, void *mem,
|
|
size_t *lenmem) {
|
|
kiss_fft_cfg st = NULL;
|
|
size_t memneeded = sizeof(struct kiss_fft_state) +
|
|
sizeof(kiss_fft_cpx) * (nfft - 1); /* twiddle factors*/
|
|
|
|
if (lenmem == NULL) {
|
|
st = (kiss_fft_cfg) new char[memneeded];
|
|
} else {
|
|
if (mem != NULL && *lenmem >= memneeded)
|
|
st = (kiss_fft_cfg)mem;
|
|
*lenmem = memneeded;
|
|
}
|
|
if (st) {
|
|
int i;
|
|
st->nfft = nfft;
|
|
st->inverse = inverse_fft;
|
|
|
|
for (i = 0; i < nfft; ++i) {
|
|
const double pi =
|
|
3.141592653589793238462643383279502884197169399375105820974944;
|
|
double phase = -2 * pi * i / nfft;
|
|
if (st->inverse)
|
|
phase *= -1;
|
|
kf_cexp(st->twiddles + i, phase);
|
|
}
|
|
|
|
kf_factor(nfft, st->factors);
|
|
}
|
|
return st;
|
|
}
|
|
|
|
void kiss_fft_stride(kiss_fft_cfg st, const kiss_fft_cpx *fin,
|
|
kiss_fft_cpx *fout, int in_stride) {
|
|
if (fin == fout) {
|
|
// NOTE: this is not really an in-place FFT algorithm.
|
|
// It just performs an out-of-place FFT into a temp buffer
|
|
kiss_fft_cpx *tmpbuf =
|
|
(kiss_fft_cpx *)KISS_FFT_TMP_ALLOC(sizeof(kiss_fft_cpx) * st->nfft);
|
|
kf_work(tmpbuf, fin, 1, in_stride, st->factors, st);
|
|
memcpy(fout, tmpbuf, sizeof(kiss_fft_cpx) * st->nfft);
|
|
KISS_FFT_TMP_FREE(tmpbuf);
|
|
} else {
|
|
kf_work(fout, fin, 1, in_stride, st->factors, st);
|
|
}
|
|
}
|
|
|
|
void kiss_fft(kiss_fft_cfg cfg, const kiss_fft_cpx *fin, kiss_fft_cpx *fout) {
|
|
kiss_fft_stride(cfg, fin, fout, 1);
|
|
}
|
|
|
|
void kiss_fft_cleanup(void) {
|
|
// nothing needed any more
|
|
}
|
|
|
|
int kiss_fft_next_fast_size(int n) {
|
|
while (1) {
|
|
int m = n;
|
|
while ((m % 2) == 0)
|
|
m /= 2;
|
|
while ((m % 3) == 0)
|
|
m /= 3;
|
|
while ((m % 5) == 0)
|
|
m /= 5;
|
|
if (m <= 1)
|
|
break; /* n is completely factorable by twos, threes, and fives */
|
|
n++;
|
|
}
|
|
return n;
|
|
}
|