mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2024-12-29 04:00:50 +01:00
1438 lines
47 KiB
C++
1438 lines
47 KiB
C++
// Copyright 2015 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#pragma once
|
|
|
|
#include <cstring>
|
|
#include <functional>
|
|
#include <optional>
|
|
#include <utility>
|
|
|
|
#include "Common/ArmCommon.h"
|
|
#include "Common/Assert.h"
|
|
#include "Common/BitSet.h"
|
|
#include "Common/BitUtils.h"
|
|
#include "Common/CodeBlock.h"
|
|
#include "Common/Common.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/MathUtil.h"
|
|
|
|
namespace Arm64Gen
|
|
{
|
|
// X30 serves a dual purpose as a link register
|
|
// Encoded as <u3:type><u5:reg>
|
|
// Types:
|
|
// 000 - 32bit GPR
|
|
// 001 - 64bit GPR
|
|
// 010 - VFP single precision
|
|
// 100 - VFP double precision
|
|
// 110 - VFP quad precision
|
|
enum class ARM64Reg
|
|
{
|
|
// 32bit registers
|
|
W0 = 0,
|
|
W1,
|
|
W2,
|
|
W3,
|
|
W4,
|
|
W5,
|
|
W6,
|
|
W7,
|
|
W8,
|
|
W9,
|
|
W10,
|
|
W11,
|
|
W12,
|
|
W13,
|
|
W14,
|
|
W15,
|
|
W16,
|
|
W17,
|
|
W18,
|
|
W19,
|
|
W20,
|
|
W21,
|
|
W22,
|
|
W23,
|
|
W24,
|
|
W25,
|
|
W26,
|
|
W27,
|
|
W28,
|
|
W29,
|
|
W30,
|
|
|
|
WSP, // 32bit stack pointer
|
|
|
|
// 64bit registers
|
|
X0 = 0x20,
|
|
X1,
|
|
X2,
|
|
X3,
|
|
X4,
|
|
X5,
|
|
X6,
|
|
X7,
|
|
X8,
|
|
X9,
|
|
X10,
|
|
X11,
|
|
X12,
|
|
X13,
|
|
X14,
|
|
X15,
|
|
X16,
|
|
X17,
|
|
X18,
|
|
X19,
|
|
X20,
|
|
X21,
|
|
X22,
|
|
X23,
|
|
X24,
|
|
X25,
|
|
X26,
|
|
X27,
|
|
X28,
|
|
X29,
|
|
X30,
|
|
|
|
SP, // 64bit stack pointer
|
|
|
|
// VFP single precision registers
|
|
S0 = 0x40,
|
|
S1,
|
|
S2,
|
|
S3,
|
|
S4,
|
|
S5,
|
|
S6,
|
|
S7,
|
|
S8,
|
|
S9,
|
|
S10,
|
|
S11,
|
|
S12,
|
|
S13,
|
|
S14,
|
|
S15,
|
|
S16,
|
|
S17,
|
|
S18,
|
|
S19,
|
|
S20,
|
|
S21,
|
|
S22,
|
|
S23,
|
|
S24,
|
|
S25,
|
|
S26,
|
|
S27,
|
|
S28,
|
|
S29,
|
|
S30,
|
|
S31,
|
|
|
|
// VFP Double Precision registers
|
|
D0 = 0x80,
|
|
D1,
|
|
D2,
|
|
D3,
|
|
D4,
|
|
D5,
|
|
D6,
|
|
D7,
|
|
D8,
|
|
D9,
|
|
D10,
|
|
D11,
|
|
D12,
|
|
D13,
|
|
D14,
|
|
D15,
|
|
D16,
|
|
D17,
|
|
D18,
|
|
D19,
|
|
D20,
|
|
D21,
|
|
D22,
|
|
D23,
|
|
D24,
|
|
D25,
|
|
D26,
|
|
D27,
|
|
D28,
|
|
D29,
|
|
D30,
|
|
D31,
|
|
|
|
// ASIMD Quad-Word registers
|
|
Q0 = 0xC0,
|
|
Q1,
|
|
Q2,
|
|
Q3,
|
|
Q4,
|
|
Q5,
|
|
Q6,
|
|
Q7,
|
|
Q8,
|
|
Q9,
|
|
Q10,
|
|
Q11,
|
|
Q12,
|
|
Q13,
|
|
Q14,
|
|
Q15,
|
|
Q16,
|
|
Q17,
|
|
Q18,
|
|
Q19,
|
|
Q20,
|
|
Q21,
|
|
Q22,
|
|
Q23,
|
|
Q24,
|
|
Q25,
|
|
Q26,
|
|
Q27,
|
|
Q28,
|
|
Q29,
|
|
Q30,
|
|
Q31,
|
|
|
|
// For PRFM(prefetch memory) encoding
|
|
// This is encoded in the Rt register
|
|
// Data preload
|
|
PLDL1KEEP = 0,
|
|
PLDL1STRM,
|
|
PLDL2KEEP,
|
|
PLDL2STRM,
|
|
PLDL3KEEP,
|
|
PLDL3STRM,
|
|
// Instruction preload
|
|
PLIL1KEEP = 8,
|
|
PLIL1STRM,
|
|
PLIL2KEEP,
|
|
PLIL2STRM,
|
|
PLIL3KEEP,
|
|
PLIL3STRM,
|
|
// Prepare for store
|
|
PLTL1KEEP = 16,
|
|
PLTL1STRM,
|
|
PLTL2KEEP,
|
|
PLTL2STRM,
|
|
PLTL3KEEP,
|
|
PLTL3STRM,
|
|
|
|
WZR = WSP,
|
|
ZR = SP,
|
|
|
|
INVALID_REG = -1,
|
|
};
|
|
|
|
constexpr int operator&(const ARM64Reg& reg, const int mask)
|
|
{
|
|
return static_cast<int>(reg) & mask;
|
|
}
|
|
constexpr int operator|(const ARM64Reg& reg, const int mask)
|
|
{
|
|
return static_cast<int>(reg) | mask;
|
|
}
|
|
constexpr ARM64Reg operator+(const ARM64Reg& reg, const int addend)
|
|
{
|
|
return static_cast<ARM64Reg>(static_cast<int>(reg) + addend);
|
|
}
|
|
constexpr bool Is64Bit(ARM64Reg reg)
|
|
{
|
|
return (reg & 0x20) != 0;
|
|
}
|
|
constexpr bool IsSingle(ARM64Reg reg)
|
|
{
|
|
return (reg & 0xC0) == 0x40;
|
|
}
|
|
constexpr bool IsDouble(ARM64Reg reg)
|
|
{
|
|
return (reg & 0xC0) == 0x80;
|
|
}
|
|
constexpr bool IsScalar(ARM64Reg reg)
|
|
{
|
|
return IsSingle(reg) || IsDouble(reg);
|
|
}
|
|
constexpr bool IsQuad(ARM64Reg reg)
|
|
{
|
|
return (reg & 0xC0) == 0xC0;
|
|
}
|
|
constexpr bool IsVector(ARM64Reg reg)
|
|
{
|
|
return (reg & 0xC0) != 0;
|
|
}
|
|
constexpr bool IsGPR(ARM64Reg reg)
|
|
{
|
|
return static_cast<int>(reg) < 0x40;
|
|
}
|
|
|
|
constexpr int DecodeReg(ARM64Reg reg)
|
|
{
|
|
return reg & 0x1F;
|
|
}
|
|
constexpr ARM64Reg EncodeRegTo32(ARM64Reg reg)
|
|
{
|
|
return static_cast<ARM64Reg>(DecodeReg(reg));
|
|
}
|
|
constexpr ARM64Reg EncodeRegTo64(ARM64Reg reg)
|
|
{
|
|
return static_cast<ARM64Reg>(reg | 0x20);
|
|
}
|
|
constexpr ARM64Reg EncodeRegToSingle(ARM64Reg reg)
|
|
{
|
|
return static_cast<ARM64Reg>(ARM64Reg::S0 | DecodeReg(reg));
|
|
}
|
|
constexpr ARM64Reg EncodeRegToDouble(ARM64Reg reg)
|
|
{
|
|
return static_cast<ARM64Reg>((reg & ~0xC0) | 0x80);
|
|
}
|
|
constexpr ARM64Reg EncodeRegToQuad(ARM64Reg reg)
|
|
{
|
|
return static_cast<ARM64Reg>(reg | 0xC0);
|
|
}
|
|
|
|
enum class ShiftType
|
|
{
|
|
// Logical Shift Left
|
|
LSL = 0,
|
|
// Logical Shift Right
|
|
LSR = 1,
|
|
// Arithmetic Shift Right
|
|
ASR = 2,
|
|
// Rotate Right
|
|
ROR = 3,
|
|
};
|
|
|
|
enum class IndexType
|
|
{
|
|
Unsigned,
|
|
Post,
|
|
Pre,
|
|
Signed, // used in LDP/STP
|
|
};
|
|
|
|
enum class ShiftAmount
|
|
{
|
|
Shift0,
|
|
Shift16,
|
|
Shift32,
|
|
Shift48,
|
|
};
|
|
|
|
enum class RoundingMode
|
|
{
|
|
A, // round to nearest, ties to away
|
|
M, // round towards -inf
|
|
N, // round to nearest, ties to even
|
|
P, // round towards +inf
|
|
Z, // round towards zero
|
|
};
|
|
|
|
struct FixupBranch
|
|
{
|
|
enum class Type : u32
|
|
{
|
|
CBZ,
|
|
CBNZ,
|
|
BConditional,
|
|
TBZ,
|
|
TBNZ,
|
|
B,
|
|
BL,
|
|
};
|
|
|
|
u8* ptr;
|
|
Type type;
|
|
// Used with B.cond
|
|
CCFlags cond;
|
|
// Used with TBZ/TBNZ
|
|
u8 bit;
|
|
// Used with Test/Compare and Branch
|
|
ARM64Reg reg;
|
|
};
|
|
|
|
enum class PStateField
|
|
{
|
|
SPSel = 0,
|
|
DAIFSet,
|
|
DAIFClr,
|
|
NZCV, // The only system registers accessible from EL0 (user space)
|
|
PMCR_EL0,
|
|
PMCCNTR_EL0,
|
|
FPCR = 0x340,
|
|
FPSR = 0x341,
|
|
};
|
|
|
|
enum class SystemHint
|
|
{
|
|
NOP,
|
|
YIELD,
|
|
WFE,
|
|
WFI,
|
|
SEV,
|
|
SEVL,
|
|
};
|
|
|
|
enum class BarrierType
|
|
{
|
|
OSHLD = 1,
|
|
OSHST = 2,
|
|
OSH = 3,
|
|
NSHLD = 5,
|
|
NSHST = 6,
|
|
NSH = 7,
|
|
ISHLD = 9,
|
|
ISHST = 10,
|
|
ISH = 11,
|
|
LD = 13,
|
|
ST = 14,
|
|
SY = 15,
|
|
};
|
|
|
|
class ArithOption
|
|
{
|
|
private:
|
|
enum class WidthSpecifier
|
|
{
|
|
Default,
|
|
Width32Bit,
|
|
Width64Bit,
|
|
};
|
|
|
|
enum class ExtendSpecifier
|
|
{
|
|
UXTB = 0x0,
|
|
UXTH = 0x1,
|
|
UXTW = 0x2, /* Also LSL on 32bit width */
|
|
UXTX = 0x3, /* Also LSL on 64bit width */
|
|
SXTB = 0x4,
|
|
SXTH = 0x5,
|
|
SXTW = 0x6,
|
|
SXTX = 0x7,
|
|
};
|
|
|
|
enum class TypeSpecifier
|
|
{
|
|
ExtendedReg,
|
|
Immediate,
|
|
ShiftedReg,
|
|
};
|
|
|
|
ARM64Reg m_destReg;
|
|
WidthSpecifier m_width;
|
|
ExtendSpecifier m_extend;
|
|
TypeSpecifier m_type;
|
|
ShiftType m_shifttype;
|
|
u32 m_shift;
|
|
|
|
public:
|
|
ArithOption(ARM64Reg Rd, bool index = false)
|
|
{
|
|
// Indexed registers are a certain feature of AARch64
|
|
// On Loadstore instructions that use a register offset
|
|
// We can have the register as an index
|
|
// If we are indexing then the offset register will
|
|
// be shifted to the left so we are indexing at intervals
|
|
// of the size of what we are loading
|
|
// 8-bit: Index does nothing
|
|
// 16-bit: Index LSL 1
|
|
// 32-bit: Index LSL 2
|
|
// 64-bit: Index LSL 3
|
|
if (index)
|
|
m_shift = 4;
|
|
else
|
|
m_shift = 0;
|
|
|
|
m_destReg = Rd;
|
|
m_type = TypeSpecifier::ExtendedReg;
|
|
if (Is64Bit(Rd))
|
|
{
|
|
m_width = WidthSpecifier::Width64Bit;
|
|
m_extend = ExtendSpecifier::UXTX;
|
|
}
|
|
else
|
|
{
|
|
m_width = WidthSpecifier::Width32Bit;
|
|
m_extend = ExtendSpecifier::UXTW;
|
|
}
|
|
m_shifttype = ShiftType::LSL;
|
|
}
|
|
ArithOption(ARM64Reg Rd, ShiftType shift_type, u32 shift)
|
|
{
|
|
m_destReg = Rd;
|
|
m_shift = shift;
|
|
m_shifttype = shift_type;
|
|
m_type = TypeSpecifier::ShiftedReg;
|
|
if (Is64Bit(Rd))
|
|
{
|
|
m_width = WidthSpecifier::Width64Bit;
|
|
if (shift == 64)
|
|
m_shift = 0;
|
|
}
|
|
else
|
|
{
|
|
m_width = WidthSpecifier::Width32Bit;
|
|
if (shift == 32)
|
|
m_shift = 0;
|
|
}
|
|
}
|
|
ARM64Reg GetReg() const { return m_destReg; }
|
|
u32 GetData() const
|
|
{
|
|
switch (m_type)
|
|
{
|
|
case TypeSpecifier::ExtendedReg:
|
|
return (static_cast<u32>(m_extend) << 13) | (m_shift << 10);
|
|
case TypeSpecifier::ShiftedReg:
|
|
return (static_cast<u32>(m_shifttype) << 22) | (m_shift << 10);
|
|
default:
|
|
DEBUG_ASSERT_MSG(DYNA_REC, false, "Invalid type in GetData");
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
bool IsExtended() const { return m_type == TypeSpecifier::ExtendedReg; }
|
|
};
|
|
|
|
struct LogicalImm
|
|
{
|
|
constexpr LogicalImm() {}
|
|
|
|
constexpr LogicalImm(u8 r_, u8 s_, bool n_) : r(r_), s(s_), n(n_), valid(true) {}
|
|
|
|
constexpr LogicalImm(u64 value, u32 width)
|
|
{
|
|
bool negate = false;
|
|
|
|
// Logical immediates are encoded using parameters n, imm_s and imm_r using
|
|
// the following table:
|
|
//
|
|
// N imms immr size S R
|
|
// 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
|
|
// 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
|
|
// 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
|
|
// 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
|
|
// 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
|
|
// 0 11110s xxxxxr 2 UInt(s) UInt(r)
|
|
// (s bits must not be all set)
|
|
//
|
|
// A pattern is constructed of size bits, where the least significant S+1 bits
|
|
// are set. The pattern is rotated right by R, and repeated across a 32 or
|
|
// 64-bit value, depending on destination register width.
|
|
//
|
|
// Put another way: the basic format of a logical immediate is a single
|
|
// contiguous stretch of 1 bits, repeated across the whole word at intervals
|
|
// given by a power of 2. To identify them quickly, we first locate the
|
|
// lowest stretch of 1 bits, then the next 1 bit above that; that combination
|
|
// is different for every logical immediate, so it gives us all the
|
|
// information we need to identify the only logical immediate that our input
|
|
// could be, and then we simply check if that's the value we actually have.
|
|
//
|
|
// (The rotation parameter does give the possibility of the stretch of 1 bits
|
|
// going 'round the end' of the word. To deal with that, we observe that in
|
|
// any situation where that happens the bitwise NOT of the value is also a
|
|
// valid logical immediate. So we simply invert the input whenever its low bit
|
|
// is set, and then we know that the rotated case can't arise.)
|
|
|
|
if (value & 1)
|
|
{
|
|
// If the low bit is 1, negate the value, and set a flag to remember that we
|
|
// did (so that we can adjust the return values appropriately).
|
|
negate = true;
|
|
value = ~value;
|
|
}
|
|
|
|
constexpr int kWRegSizeInBits = 32;
|
|
|
|
if (width == kWRegSizeInBits)
|
|
{
|
|
// To handle 32-bit logical immediates, the very easiest thing is to repeat
|
|
// the input value twice to make a 64-bit word. The correct encoding of that
|
|
// as a logical immediate will also be the correct encoding of the 32-bit
|
|
// value.
|
|
|
|
// The most-significant 32 bits may not be zero (ie. negate is true) so
|
|
// shift the value left before duplicating it.
|
|
value <<= kWRegSizeInBits;
|
|
value |= value >> kWRegSizeInBits;
|
|
}
|
|
|
|
// The basic analysis idea: imagine our input word looks like this.
|
|
//
|
|
// 0011111000111110001111100011111000111110001111100011111000111110
|
|
// c b a
|
|
// |<--d-->|
|
|
//
|
|
// We find the lowest set bit (as an actual power-of-2 value, not its index)
|
|
// and call it a. Then we add a to our original number, which wipes out the
|
|
// bottommost stretch of set bits and replaces it with a 1 carried into the
|
|
// next zero bit. Then we look for the new lowest set bit, which is in
|
|
// position b, and subtract it, so now our number is just like the original
|
|
// but with the lowest stretch of set bits completely gone. Now we find the
|
|
// lowest set bit again, which is position c in the diagram above. Then we'll
|
|
// measure the distance d between bit positions a and c (using CLZ), and that
|
|
// tells us that the only valid logical immediate that could possibly be equal
|
|
// to this number is the one in which a stretch of bits running from a to just
|
|
// below b is replicated every d bits.
|
|
u64 a = Common::LargestPowerOf2Divisor(value);
|
|
u64 value_plus_a = value + a;
|
|
u64 b = Common::LargestPowerOf2Divisor(value_plus_a);
|
|
u64 value_plus_a_minus_b = value_plus_a - b;
|
|
u64 c = Common::LargestPowerOf2Divisor(value_plus_a_minus_b);
|
|
|
|
int d = 0, clz_a = 0, out_n = 0;
|
|
u64 mask = 0;
|
|
|
|
if (c != 0)
|
|
{
|
|
// The general case, in which there is more than one stretch of set bits.
|
|
// Compute the repeat distance d, and set up a bitmask covering the basic
|
|
// unit of repetition (i.e. a word with the bottom d bits set). Also, in all
|
|
// of these cases the N bit of the output will be zero.
|
|
clz_a = Common::CountLeadingZeros(a);
|
|
int clz_c = Common::CountLeadingZeros(c);
|
|
d = clz_a - clz_c;
|
|
mask = ((UINT64_C(1) << d) - 1);
|
|
out_n = 0;
|
|
}
|
|
else
|
|
{
|
|
// Handle degenerate cases.
|
|
//
|
|
// If any of those 'find lowest set bit' operations didn't find a set bit at
|
|
// all, then the word will have been zero thereafter, so in particular the
|
|
// last lowest_set_bit operation will have returned zero. So we can test for
|
|
// all the special case conditions in one go by seeing if c is zero.
|
|
if (a == 0)
|
|
{
|
|
// The input was zero (or all 1 bits, which will come to here too after we
|
|
// inverted it at the start of the function), which is invalid.
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
// Otherwise, if c was zero but a was not, then there's just one stretch
|
|
// of set bits in our word, meaning that we have the trivial case of
|
|
// d == 64 and only one 'repetition'. Set up all the same variables as in
|
|
// the general case above, and set the N bit in the output.
|
|
clz_a = Common::CountLeadingZeros(a);
|
|
d = 64;
|
|
mask = ~UINT64_C(0);
|
|
out_n = 1;
|
|
}
|
|
}
|
|
|
|
// If the repeat period d is not a power of two, it can't be encoded.
|
|
if (!MathUtil::IsPow2<u64>(d))
|
|
return;
|
|
|
|
// If the bit stretch (b - a) does not fit within the mask derived from the
|
|
// repeat period, then fail.
|
|
if (((b - a) & ~mask) != 0)
|
|
return;
|
|
|
|
// The only possible option is b - a repeated every d bits. Now we're going to
|
|
// actually construct the valid logical immediate derived from that
|
|
// specification, and see if it equals our original input.
|
|
//
|
|
// To repeat a value every d bits, we multiply it by a number of the form
|
|
// (1 + 2^d + 2^(2d) + ...), i.e. 0x0001000100010001 or similar. These can
|
|
// be derived using a table lookup on CLZ(d).
|
|
constexpr std::array<u64, 6> multipliers = {{
|
|
0x0000000000000001UL,
|
|
0x0000000100000001UL,
|
|
0x0001000100010001UL,
|
|
0x0101010101010101UL,
|
|
0x1111111111111111UL,
|
|
0x5555555555555555UL,
|
|
}};
|
|
|
|
const int multiplier_idx = Common::CountLeadingZeros((u64)d) - 57;
|
|
|
|
// Ensure that the index to the multipliers array is within bounds.
|
|
DEBUG_ASSERT((multiplier_idx >= 0) &&
|
|
(static_cast<size_t>(multiplier_idx) < multipliers.size()));
|
|
|
|
const u64 multiplier = multipliers[multiplier_idx];
|
|
const u64 candidate = (b - a) * multiplier;
|
|
|
|
// The candidate pattern doesn't match our input value, so fail.
|
|
if (value != candidate)
|
|
return;
|
|
|
|
// We have a match! This is a valid logical immediate, so now we have to
|
|
// construct the bits and pieces of the instruction encoding that generates
|
|
// it.
|
|
n = out_n;
|
|
|
|
// Count the set bits in our basic stretch. The special case of clz(0) == -1
|
|
// makes the answer come out right for stretches that reach the very top of
|
|
// the word (e.g. numbers like 0xffffc00000000000).
|
|
const int clz_b = (b == 0) ? -1 : Common::CountLeadingZeros(b);
|
|
s = clz_a - clz_b;
|
|
|
|
// Decide how many bits to rotate right by, to put the low bit of that basic
|
|
// stretch in position a.
|
|
if (negate)
|
|
{
|
|
// If we inverted the input right at the start of this function, here's
|
|
// where we compensate: the number of set bits becomes the number of clear
|
|
// bits, and the rotation count is based on position b rather than position
|
|
// a (since b is the location of the 'lowest' 1 bit after inversion).
|
|
s = d - s;
|
|
r = (clz_b + 1) & (d - 1);
|
|
}
|
|
else
|
|
{
|
|
r = (clz_a + 1) & (d - 1);
|
|
}
|
|
|
|
// Now we're done, except for having to encode the S output in such a way that
|
|
// it gives both the number of set bits and the length of the repeated
|
|
// segment. The s field is encoded like this:
|
|
//
|
|
// imms size S
|
|
// ssssss 64 UInt(ssssss)
|
|
// 0sssss 32 UInt(sssss)
|
|
// 10ssss 16 UInt(ssss)
|
|
// 110sss 8 UInt(sss)
|
|
// 1110ss 4 UInt(ss)
|
|
// 11110s 2 UInt(s)
|
|
//
|
|
// So we 'or' (-d << 1) with our computed s to form imms.
|
|
s = ((-d << 1) | (s - 1)) & 0x3f;
|
|
|
|
valid = true;
|
|
}
|
|
|
|
constexpr operator bool() const { return valid; }
|
|
|
|
u8 r = 0;
|
|
u8 s = 0;
|
|
bool n = false;
|
|
bool valid = false;
|
|
};
|
|
|
|
class ARM64XEmitter
|
|
{
|
|
friend class ARM64FloatEmitter;
|
|
|
|
private:
|
|
u8* m_code;
|
|
u8* m_lastCacheFlushEnd;
|
|
|
|
void AddImmediate(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool shift, bool negative, bool flags);
|
|
void EncodeCompareBranchInst(u32 op, ARM64Reg Rt, const void* ptr);
|
|
void EncodeTestBranchInst(u32 op, ARM64Reg Rt, u8 bits, const void* ptr);
|
|
void EncodeUnconditionalBranchInst(u32 op, const void* ptr);
|
|
void EncodeUnconditionalBranchInst(u32 opc, u32 op2, u32 op3, u32 op4, ARM64Reg Rn);
|
|
void EncodeExceptionInst(u32 instenc, u32 imm);
|
|
void EncodeSystemInst(u32 op0, u32 op1, u32 CRn, u32 CRm, u32 op2, ARM64Reg Rt);
|
|
void EncodeArithmeticInst(u32 instenc, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm,
|
|
ArithOption Option);
|
|
void EncodeArithmeticCarryInst(u32 op, bool flags, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EncodeCondCompareImmInst(u32 op, ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
|
|
void EncodeCondCompareRegInst(u32 op, ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
|
|
void EncodeCondSelectInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
|
|
void EncodeData1SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EncodeData2SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EncodeData3SrcInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void EncodeLogicalInst(u32 instenc, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void EncodeLoadRegisterInst(u32 bitop, ARM64Reg Rt, u32 imm);
|
|
void EncodeLoadStoreExcInst(u32 instenc, ARM64Reg Rs, ARM64Reg Rt2, ARM64Reg Rn, ARM64Reg Rt);
|
|
void EncodeLoadStorePairedInst(u32 op, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
|
|
void EncodeLoadStoreIndexedInst(u32 op, u32 op2, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void EncodeLoadStoreIndexedInst(u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm, u8 size);
|
|
void EncodeMOVWideInst(u32 op, ARM64Reg Rd, u32 imm, ShiftAmount pos);
|
|
void EncodeBitfieldMOVInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
|
|
void EncodeLoadStoreRegisterOffset(u32 size, u32 opc, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void EncodeAddSubImmInst(u32 op, bool flags, u32 shift, u32 imm, ARM64Reg Rn, ARM64Reg Rd);
|
|
void EncodeLogicalImmInst(u32 op, ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
|
|
void EncodeLoadStorePair(u32 op, u32 load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn,
|
|
s32 imm);
|
|
void EncodeAddressInst(u32 op, ARM64Reg Rd, s32 imm);
|
|
void EncodeLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
|
|
template <typename T>
|
|
void MOVI2RImpl(ARM64Reg Rd, T imm);
|
|
|
|
protected:
|
|
void Write32(u32 value);
|
|
|
|
public:
|
|
ARM64XEmitter() : m_code(nullptr), m_lastCacheFlushEnd(nullptr) {}
|
|
ARM64XEmitter(u8* code_ptr)
|
|
{
|
|
m_code = code_ptr;
|
|
m_lastCacheFlushEnd = code_ptr;
|
|
}
|
|
|
|
virtual ~ARM64XEmitter() {}
|
|
|
|
// 'end' and 'write_failed' are unused in the ARM code emitter at the moment.
|
|
// They're just here for interface compatibility with the x64 code emitter.
|
|
void SetCodePtr(u8* ptr, u8* end, bool write_failed = false);
|
|
|
|
void SetCodePtrUnsafe(u8* ptr);
|
|
void ReserveCodeSpace(u32 bytes);
|
|
u8* AlignCode16();
|
|
u8* AlignCodePage();
|
|
const u8* GetCodePtr() const;
|
|
void FlushIcache();
|
|
void FlushIcacheSection(u8* start, u8* end);
|
|
u8* GetWritableCodePtr();
|
|
|
|
// FixupBranch branching
|
|
void SetJumpTarget(FixupBranch const& branch);
|
|
FixupBranch CBZ(ARM64Reg Rt);
|
|
FixupBranch CBNZ(ARM64Reg Rt);
|
|
FixupBranch B(CCFlags cond);
|
|
FixupBranch TBZ(ARM64Reg Rt, u8 bit);
|
|
FixupBranch TBNZ(ARM64Reg Rt, u8 bit);
|
|
FixupBranch B();
|
|
FixupBranch BL();
|
|
|
|
// Compare and Branch
|
|
void CBZ(ARM64Reg Rt, const void* ptr);
|
|
void CBNZ(ARM64Reg Rt, const void* ptr);
|
|
|
|
// Conditional Branch
|
|
void B(CCFlags cond, const void* ptr);
|
|
|
|
// Test and Branch
|
|
void TBZ(ARM64Reg Rt, u8 bits, const void* ptr);
|
|
void TBNZ(ARM64Reg Rt, u8 bits, const void* ptr);
|
|
|
|
// Unconditional Branch
|
|
void B(const void* ptr);
|
|
void BL(const void* ptr);
|
|
|
|
// Unconditional Branch (register)
|
|
void BR(ARM64Reg Rn);
|
|
void BLR(ARM64Reg Rn);
|
|
void RET(ARM64Reg Rn = ARM64Reg::X30);
|
|
void ERET();
|
|
void DRPS();
|
|
|
|
// Exception generation
|
|
void SVC(u32 imm);
|
|
void HVC(u32 imm);
|
|
void SMC(u32 imm);
|
|
void BRK(u32 imm);
|
|
void HLT(u32 imm);
|
|
void DCPS1(u32 imm);
|
|
void DCPS2(u32 imm);
|
|
void DCPS3(u32 imm);
|
|
|
|
// System
|
|
void _MSR(PStateField field, u8 imm);
|
|
void _MSR(PStateField field, ARM64Reg Rt);
|
|
void MRS(ARM64Reg Rt, PStateField field);
|
|
void CNTVCT(ARM64Reg Rt);
|
|
|
|
void HINT(SystemHint op);
|
|
void NOP() { HINT(SystemHint::NOP); }
|
|
void SEV() { HINT(SystemHint::SEV); }
|
|
void SEVL() { HINT(SystemHint::SEVL); }
|
|
void WFE() { HINT(SystemHint::WFE); }
|
|
void WFI() { HINT(SystemHint::WFI); }
|
|
void YIELD() { HINT(SystemHint::YIELD); }
|
|
|
|
void CLREX();
|
|
void DSB(BarrierType type);
|
|
void DMB(BarrierType type);
|
|
void ISB(BarrierType type);
|
|
|
|
// Add/Subtract (Extended/Shifted register)
|
|
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
|
|
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ADDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
|
|
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void SUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
|
|
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void SUBS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
|
|
void CMN(ARM64Reg Rn, ARM64Reg Rm);
|
|
void CMN(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
|
|
void CMP(ARM64Reg Rn, ARM64Reg Rm);
|
|
void CMP(ARM64Reg Rn, ARM64Reg Rm, ArithOption Option);
|
|
|
|
// Add/Subtract (with carry)
|
|
void ADC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ADCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void SBC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void SBCS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Conditional Compare (immediate)
|
|
void CCMN(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
|
|
void CCMP(ARM64Reg Rn, u32 imm, u32 nzcv, CCFlags cond);
|
|
|
|
// Conditional Compare (register)
|
|
void CCMN(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
|
|
void CCMP(ARM64Reg Rn, ARM64Reg Rm, u32 nzcv, CCFlags cond);
|
|
|
|
// Conditional Select
|
|
void CSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
|
|
void CSINC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
|
|
void CSINV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
|
|
void CSNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
|
|
|
|
// Aliases
|
|
void CSET(ARM64Reg Rd, CCFlags cond)
|
|
{
|
|
ARM64Reg zr = Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR;
|
|
CSINC(Rd, zr, zr, (CCFlags)((u32)cond ^ 1));
|
|
}
|
|
void CSETM(ARM64Reg Rd, CCFlags cond)
|
|
{
|
|
ARM64Reg zr = Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR;
|
|
CSINV(Rd, zr, zr, (CCFlags)((u32)cond ^ 1));
|
|
}
|
|
void NEG(ARM64Reg Rd, ARM64Reg Rs) { SUB(Rd, Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR, Rs); }
|
|
void NEGS(ARM64Reg Rd, ARM64Reg Rs) { SUBS(Rd, Is64Bit(Rd) ? ARM64Reg::ZR : ARM64Reg::WZR, Rs); }
|
|
// Data-Processing 1 source
|
|
void RBIT(ARM64Reg Rd, ARM64Reg Rn);
|
|
void REV16(ARM64Reg Rd, ARM64Reg Rn);
|
|
void REV32(ARM64Reg Rd, ARM64Reg Rn);
|
|
void REV64(ARM64Reg Rd, ARM64Reg Rn);
|
|
void CLZ(ARM64Reg Rd, ARM64Reg Rn);
|
|
void CLS(ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
// Data-Processing 2 source
|
|
void UDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void SDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void LSLV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void LSRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ASRV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void RORV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32B(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32H(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32W(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32CB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32CH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32CW(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32X(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void CRC32CX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Data-Processing 3 source
|
|
void MADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void MSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void SMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void SMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void SMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void SMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void UMADDL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void UMULL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void UMSUBL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void UMULH(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void MUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void MNEG(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Logical (shifted register)
|
|
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift);
|
|
void TST(ARM64Reg Rn, ARM64Reg Rm) { ANDS(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, Rm); }
|
|
void TST(ARM64Reg Rn, ARM64Reg Rm, ArithOption Shift)
|
|
{
|
|
ANDS(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, Rm, Shift);
|
|
}
|
|
|
|
// Wrap the above for saner syntax
|
|
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
AND(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
BIC(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
ORR(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
ORN(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void EOR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
EOR(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void EON(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
EON(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void ANDS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
ANDS(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
void BICS(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm)
|
|
{
|
|
BICS(Rd, Rn, Rm, ArithOption(Rd, ShiftType::LSL, 0));
|
|
}
|
|
// Convenience wrappers around ORR. These match the official convenience syntax.
|
|
void MOV(ARM64Reg Rd, ARM64Reg Rm, ArithOption Shift);
|
|
void MOV(ARM64Reg Rd, ARM64Reg Rm);
|
|
void MVN(ARM64Reg Rd, ARM64Reg Rm);
|
|
|
|
// Convenience wrappers around UBFM/EXTR.
|
|
void LSR(ARM64Reg Rd, ARM64Reg Rm, int shift);
|
|
void LSL(ARM64Reg Rd, ARM64Reg Rm, int shift);
|
|
void ASR(ARM64Reg Rd, ARM64Reg Rm, int shift);
|
|
void ROR(ARM64Reg Rd, ARM64Reg Rm, int shift);
|
|
|
|
// Logical (immediate)
|
|
void AND(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
|
|
void ANDS(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
|
|
void EOR(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
|
|
void ORR(ARM64Reg Rd, ARM64Reg Rn, LogicalImm imm);
|
|
void TST(ARM64Reg Rn, LogicalImm imm);
|
|
// Add/subtract (immediate)
|
|
void ADD(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
|
|
void ADDS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
|
|
void SUB(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
|
|
void SUBS(ARM64Reg Rd, ARM64Reg Rn, u32 imm, bool shift = false);
|
|
void CMP(ARM64Reg Rn, u32 imm, bool shift = false);
|
|
|
|
// Data Processing (Immediate)
|
|
void MOVZ(ARM64Reg Rd, u32 imm, ShiftAmount pos = ShiftAmount::Shift0);
|
|
void MOVN(ARM64Reg Rd, u32 imm, ShiftAmount pos = ShiftAmount::Shift0);
|
|
void MOVK(ARM64Reg Rd, u32 imm, ShiftAmount pos = ShiftAmount::Shift0);
|
|
|
|
// Bitfield move
|
|
void BFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
|
|
void SBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
|
|
void UBFM(ARM64Reg Rd, ARM64Reg Rn, u32 immr, u32 imms);
|
|
void BFI(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
|
|
void BFXIL(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
|
|
void UBFIZ(ARM64Reg Rd, ARM64Reg Rn, u32 lsb, u32 width);
|
|
|
|
// Extract register (ROR with two inputs, if same then faster on A67)
|
|
void EXTR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u32 shift);
|
|
|
|
// Aliases
|
|
void SXTB(ARM64Reg Rd, ARM64Reg Rn);
|
|
void SXTH(ARM64Reg Rd, ARM64Reg Rn);
|
|
void SXTW(ARM64Reg Rd, ARM64Reg Rn);
|
|
void UXTB(ARM64Reg Rd, ARM64Reg Rn);
|
|
void UXTH(ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
void UBFX(ARM64Reg Rd, ARM64Reg Rn, int lsb, int width) { UBFM(Rd, Rn, lsb, lsb + width - 1); }
|
|
// Load Register (Literal)
|
|
void LDR(ARM64Reg Rt, u32 imm);
|
|
void LDRSW(ARM64Reg Rt, u32 imm);
|
|
void PRFM(ARM64Reg Rt, u32 imm);
|
|
|
|
// Load/Store Exclusive
|
|
void STXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
|
|
void STLXRB(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDXRB(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDAXRB(ARM64Reg Rt, ARM64Reg Rn);
|
|
void STLRB(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDARB(ARM64Reg Rt, ARM64Reg Rn);
|
|
void STXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
|
|
void STLXRH(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDXRH(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDAXRH(ARM64Reg Rt, ARM64Reg Rn);
|
|
void STLRH(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDARH(ARM64Reg Rt, ARM64Reg Rn);
|
|
void STXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
|
|
void STLXR(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rn);
|
|
void STXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
|
|
void STLXP(ARM64Reg Rs, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
|
|
void LDXR(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDAXR(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
|
|
void LDAXP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn);
|
|
void STLR(ARM64Reg Rt, ARM64Reg Rn);
|
|
void LDAR(ARM64Reg Rt, ARM64Reg Rn);
|
|
|
|
// Load/Store no-allocate pair (offset)
|
|
void STNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
|
|
void LDNP(ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, u32 imm);
|
|
|
|
// Load/Store register (immediate indexed)
|
|
void STRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDRB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDRSB(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void STRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDRH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDRSH(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void STR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDR(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDRSW(IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
|
|
// Load/Store register (register offset)
|
|
void STRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDRB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDRSB(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void STRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDRH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDRSH(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void STR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDR(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDRSW(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void PRFM(ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
|
|
// Load/Store register (unscaled offset)
|
|
void STURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDURB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDURSB(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void STURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDURH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDURSH(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void STUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDUR(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void LDURSW(ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
|
|
// Load/Store pair
|
|
void LDP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
|
|
void LDPSW(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
|
|
void STP(IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
|
|
|
|
// Address of label/page PC-relative
|
|
void ADR(ARM64Reg Rd, s32 imm);
|
|
void ADRP(ARM64Reg Rd, s64 imm);
|
|
|
|
// Wrapper around ADR/ADRP/MOVZ/MOVN/MOVK
|
|
void MOVI2R(ARM64Reg Rd, u64 imm);
|
|
bool MOVI2R2(ARM64Reg Rd, u64 imm1, u64 imm2);
|
|
template <class P>
|
|
void MOVP2R(ARM64Reg Rd, P* ptr)
|
|
{
|
|
ASSERT_MSG(DYNA_REC, Is64Bit(Rd), "Can't store pointers in 32-bit registers");
|
|
MOVI2R(Rd, (uintptr_t)ptr);
|
|
}
|
|
|
|
// Wrapper around AND x, y, imm etc.
|
|
// If you are sure the imm will work, preferably construct a LogicalImm directly instead,
|
|
// since that is constexpr and thus can be done at compile-time for constant values.
|
|
void ANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
|
void ANDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
|
void TSTI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch)
|
|
{
|
|
ANDSI2R(Is64Bit(Rn) ? ARM64Reg::ZR : ARM64Reg::WZR, Rn, imm, scratch);
|
|
}
|
|
void ORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
|
void EORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch);
|
|
|
|
void ADDI2R_internal(ARM64Reg Rd, ARM64Reg Rn, u64 imm, bool negative, bool flags,
|
|
ARM64Reg scratch);
|
|
void ADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
|
void ADDSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
|
void SUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
|
void SUBSI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
|
void CMPI2R(ARM64Reg Rn, u64 imm, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
|
|
|
bool TryADDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);
|
|
bool TrySUBI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);
|
|
bool TryCMPI2R(ARM64Reg Rn, u64 imm);
|
|
|
|
bool TryANDI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);
|
|
bool TryORRI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);
|
|
bool TryEORI2R(ARM64Reg Rd, ARM64Reg Rn, u64 imm);
|
|
|
|
// ABI related
|
|
void ABI_PushRegisters(BitSet32 registers);
|
|
void ABI_PopRegisters(BitSet32 registers, BitSet32 ignore_mask = BitSet32(0));
|
|
|
|
// Utility to generate a call to a std::function object.
|
|
//
|
|
// Unfortunately, calling operator() directly is undefined behavior in C++
|
|
// (this method might be a thunk in the case of multi-inheritance) so we
|
|
// have to go through a trampoline function.
|
|
template <typename T, typename... Args>
|
|
static T CallLambdaTrampoline(const std::function<T(Args...)>* f, Args... args)
|
|
{
|
|
return (*f)(args...);
|
|
}
|
|
|
|
// This function expects you to have set up the state.
|
|
// Overwrites X0 and X8
|
|
template <typename T, typename... Args>
|
|
ARM64Reg ABI_SetupLambda(const std::function<T(Args...)>* f)
|
|
{
|
|
auto trampoline = &ARM64XEmitter::CallLambdaTrampoline<T, Args...>;
|
|
MOVP2R(ARM64Reg::X8, trampoline);
|
|
MOVP2R(ARM64Reg::X0, const_cast<void*>((const void*)f));
|
|
return ARM64Reg::X8;
|
|
}
|
|
|
|
// Plain function call
|
|
void QuickCallFunction(ARM64Reg scratchreg, const void* func);
|
|
template <typename T>
|
|
void QuickCallFunction(ARM64Reg scratchreg, T func)
|
|
{
|
|
QuickCallFunction(scratchreg, (const void*)func);
|
|
}
|
|
};
|
|
|
|
class ARM64FloatEmitter
|
|
{
|
|
public:
|
|
ARM64FloatEmitter(ARM64XEmitter* emit) : m_emit(emit) {}
|
|
void LDR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void STR(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
|
|
// Loadstore unscaled
|
|
void LDUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void STUR(u8 size, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
|
|
// Loadstore single structure
|
|
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
|
|
void LD1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
|
|
void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
|
|
void LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn);
|
|
void LD1R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
|
|
void LD2R(u8 size, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn);
|
|
void ST1(u8 size, ARM64Reg Rt, u8 index, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Loadstore multiple structure
|
|
void LD1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
|
|
void LD1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = ARM64Reg::SP);
|
|
void ST1(u8 size, u8 count, ARM64Reg Rt, ARM64Reg Rn);
|
|
void ST1(u8 size, u8 count, IndexType type, ARM64Reg Rt, ARM64Reg Rn, ARM64Reg Rm = ARM64Reg::SP);
|
|
|
|
// Loadstore paired
|
|
void LDP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
|
|
void STP(u8 size, IndexType type, ARM64Reg Rt, ARM64Reg Rt2, ARM64Reg Rn, s32 imm);
|
|
|
|
// Loadstore register offset
|
|
void STR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void LDR(u8 size, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
|
|
// Scalar - 1 Source
|
|
void FABS(ARM64Reg Rd, ARM64Reg Rn);
|
|
void FNEG(ARM64Reg Rd, ARM64Reg Rn);
|
|
void FSQRT(ARM64Reg Rd, ARM64Reg Rn);
|
|
void FMOV(ARM64Reg Rd, ARM64Reg Rn, bool top = false); // Also generalized move between GPR/FP
|
|
void FRECPE(ARM64Reg Rd, ARM64Reg Rn);
|
|
void FRSQRTE(ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
// Scalar - 2 Source
|
|
void ADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FDIV(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMAX(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMIN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMAXNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMINNM(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FNMUL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Scalar - 3 Source. Note - the accumulator is last on ARM!
|
|
void FMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void FMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void FNMADD(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
void FNMSUB(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra);
|
|
|
|
// Scalar floating point immediate
|
|
void FMOV(ARM64Reg Rd, uint8_t imm8);
|
|
|
|
// Vector
|
|
void ADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void AND(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void BIC(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void BSL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
|
|
void FABS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FADD(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMAX(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMLA(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMLS(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMIN(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FCVTL(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCVTL2(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCVTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCVTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCVTZS(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCVTZU(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FDIV(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FNEG(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FRECPE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FRSQRTE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FSUB(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void NOT(ARM64Reg Rd, ARM64Reg Rn);
|
|
void ORR(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ORN(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void MOV(ARM64Reg Rd, ARM64Reg Rn) { ORR(Rd, Rn, Rn); }
|
|
void REV16(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void REV32(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void REV64(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void SCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale);
|
|
void UCVTF(u8 size, ARM64Reg Rd, ARM64Reg Rn, int scale);
|
|
void SQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void SQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void UQXTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void UQXTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void XTN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void XTN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
// Move
|
|
void DUP(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void INS(u8 size, ARM64Reg Rd, u8 index, ARM64Reg Rn);
|
|
void INS(u8 size, ARM64Reg Rd, u8 index1, ARM64Reg Rn, u8 index2);
|
|
void UMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
|
|
void SMOV(u8 size, ARM64Reg Rd, ARM64Reg Rn, u8 index);
|
|
|
|
// One source
|
|
void FCVT(u8 size_to, u8 size_from, ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
// Scalar convert float to int, in a lot of variants.
|
|
// Note that the scalar version of this operation has two encodings, one that goes to an integer
|
|
// register
|
|
// and one that outputs to a scalar fp register.
|
|
void FCVTS(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round);
|
|
void FCVTU(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round);
|
|
|
|
// Scalar convert int to float. No rounding mode specifier necessary.
|
|
void SCVTF(ARM64Reg Rd, ARM64Reg Rn);
|
|
void UCVTF(ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
// Scalar fixed point to float. scale is the number of fractional bits.
|
|
void SCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale);
|
|
void UCVTF(ARM64Reg Rd, ARM64Reg Rn, int scale);
|
|
|
|
// Float comparison
|
|
void FCMP(ARM64Reg Rn, ARM64Reg Rm);
|
|
void FCMP(ARM64Reg Rn);
|
|
void FCMPE(ARM64Reg Rn, ARM64Reg Rm);
|
|
void FCMPE(ARM64Reg Rn);
|
|
void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FCMEQ(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FCMGE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FCMGT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCMLE(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FCMLT(u8 size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void FACGE(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void FACGT(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Conditional select
|
|
void FCSEL(ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, CCFlags cond);
|
|
|
|
// Permute
|
|
void UZP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void TRN1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ZIP1(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void UZP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void TRN2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void ZIP2(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
|
|
// Shift by immediate
|
|
void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
|
|
void SSHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
|
|
void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
|
|
void USHLL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
|
|
void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
|
|
void SHRN2(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift);
|
|
void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void SXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
void UXTL2(u8 src_size, ARM64Reg Rd, ARM64Reg Rn);
|
|
|
|
// vector x indexed element
|
|
void FMUL(u8 size, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
|
|
void FMLA(u8 esize, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, u8 index);
|
|
|
|
// Modified Immediate
|
|
void MOVI(u8 size, ARM64Reg Rd, u64 imm, u8 shift = 0);
|
|
void ORR(u8 size, ARM64Reg Rd, u8 imm, u8 shift = 0);
|
|
void BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift = 0);
|
|
|
|
void MOVI2F(ARM64Reg Rd, float value, ARM64Reg scratch = ARM64Reg::INVALID_REG,
|
|
bool negate = false);
|
|
void MOVI2FDUP(ARM64Reg Rd, float value, ARM64Reg scratch = ARM64Reg::INVALID_REG);
|
|
|
|
// ABI related
|
|
void ABI_PushRegisters(BitSet32 registers, ARM64Reg tmp = ARM64Reg::INVALID_REG);
|
|
void ABI_PopRegisters(BitSet32 registers, ARM64Reg tmp = ARM64Reg::INVALID_REG);
|
|
|
|
private:
|
|
ARM64XEmitter* m_emit;
|
|
inline void Write32(u32 value) { m_emit->Write32(value); }
|
|
// Emitting functions
|
|
void EmitLoadStoreImmediate(u8 size, u32 opc, IndexType type, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void EmitScalar2Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn,
|
|
ARM64Reg Rm);
|
|
void EmitScalarThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EmitThreeSame(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EmitCopy(bool Q, u32 op, u32 imm5, u32 imm4, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitScalar2RegMisc(bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void Emit2RegMisc(bool Q, bool U, u32 size, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt,
|
|
ARM64Reg Rn);
|
|
void EmitLoadStoreSingleStructure(bool L, bool R, u32 opcode, bool S, u32 size, ARM64Reg Rt,
|
|
ARM64Reg Rn, ARM64Reg Rm);
|
|
void Emit1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitConversion(bool sf, bool S, u32 type, u32 rmode, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitConversion2(bool sf, bool S, bool direction, u32 type, u32 rmode, u32 opcode, int scale,
|
|
ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitCompare(bool M, bool S, u32 op, u32 opcode2, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EmitCondSelect(bool M, bool S, CCFlags cond, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EmitPermute(u32 size, u32 op, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm);
|
|
void EmitScalarImm(bool M, bool S, u32 type, u32 imm5, ARM64Reg Rd, u32 imm8);
|
|
void EmitShiftImm(bool Q, bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitScalarShiftImm(bool U, u32 immh, u32 immb, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitLoadStoreMultipleStructure(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn);
|
|
void EmitLoadStoreMultipleStructurePost(u32 size, bool L, u32 opcode, ARM64Reg Rt, ARM64Reg Rn,
|
|
ARM64Reg Rm);
|
|
void EmitScalar1Source(bool M, bool S, u32 type, u32 opcode, ARM64Reg Rd, ARM64Reg Rn);
|
|
void EmitVectorxElement(bool U, u32 size, bool L, u32 opcode, bool H, ARM64Reg Rd, ARM64Reg Rn,
|
|
ARM64Reg Rm);
|
|
void EmitLoadStoreUnscaled(u32 size, u32 op, ARM64Reg Rt, ARM64Reg Rn, s32 imm);
|
|
void EmitConvertScalarToInt(ARM64Reg Rd, ARM64Reg Rn, RoundingMode round, bool sign);
|
|
void EmitScalar3Source(bool isDouble, ARM64Reg Rd, ARM64Reg Rn, ARM64Reg Rm, ARM64Reg Ra,
|
|
int opcode);
|
|
void EncodeLoadStorePair(u32 size, bool load, IndexType type, ARM64Reg Rt, ARM64Reg Rt2,
|
|
ARM64Reg Rn, s32 imm);
|
|
void EncodeLoadStoreRegisterOffset(u32 size, bool load, ARM64Reg Rt, ARM64Reg Rn, ArithOption Rm);
|
|
void EncodeModImm(bool Q, u8 op, u8 cmode, u8 o2, ARM64Reg Rd, u8 abcdefgh);
|
|
|
|
void ORR_BIC(u8 size, ARM64Reg Rd, u8 imm, u8 shift, u8 op);
|
|
|
|
void SSHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
|
|
void USHLL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
|
|
void SHRN(u8 dest_size, ARM64Reg Rd, ARM64Reg Rn, u32 shift, bool upper);
|
|
void SXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper);
|
|
void UXTL(u8 src_size, ARM64Reg Rd, ARM64Reg Rn, bool upper);
|
|
};
|
|
|
|
class ARM64CodeBlock : public Common::CodeBlock<ARM64XEmitter>
|
|
{
|
|
private:
|
|
void PoisonMemory() override
|
|
{
|
|
// If our memory isn't a multiple of u32 then this won't write the last remaining bytes with
|
|
// anything
|
|
// Less than optimal, but there would be nothing we could do but throw a runtime warning anyway.
|
|
// AArch64: 0xD4200000 = BRK 0
|
|
constexpr u32 brk_0 = 0xD4200000;
|
|
|
|
for (size_t i = 0; i < region_size; i += sizeof(u32))
|
|
{
|
|
std::memcpy(region + i, &brk_0, sizeof(u32));
|
|
}
|
|
}
|
|
};
|
|
} // namespace Arm64Gen
|