dolphin/Source/Core/VideoBackends/Vulkan/CommandBufferManager.h
Pierre Bourdon e149ad4f0a
treewide: convert GPLv2+ license info to SPDX tags
SPDX standardizes how source code conveys its copyright and licensing
information. See https://spdx.github.io/spdx-spec/1-rationale/ . SPDX
tags are adopted in many large projects, including things like the Linux
kernel.
2021-07-05 04:35:56 +02:00

147 lines
5.2 KiB
C++

// Copyright 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#pragma once
#include <array>
#include <cstddef>
#include <deque>
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <thread>
#include <utility>
#include <vector>
#include "Common/BlockingLoop.h"
#include "Common/Flag.h"
#include "Common/Semaphore.h"
#include "VideoBackends/Vulkan/Constants.h"
namespace Vulkan
{
class CommandBufferManager
{
public:
explicit CommandBufferManager(bool use_threaded_submission);
~CommandBufferManager();
bool Initialize();
// These command buffers are allocated per-frame. They are valid until the command buffer
// is submitted, after that you should call these functions again.
VkCommandBuffer GetCurrentInitCommandBuffer()
{
m_frame_resources[m_current_frame].init_command_buffer_used = true;
return m_frame_resources[m_current_frame].command_buffers[0];
}
VkCommandBuffer GetCurrentCommandBuffer() const
{
return m_frame_resources[m_current_frame].command_buffers[1];
}
VkDescriptorPool GetCurrentDescriptorPool() const
{
return m_frame_resources[m_current_frame].descriptor_pool;
}
// Allocates a descriptors set from the pool reserved for the current frame.
VkDescriptorSet AllocateDescriptorSet(VkDescriptorSetLayout set_layout);
// Fence "counters" are used to track which commands have been completed by the GPU.
// If the last completed fence counter is greater or equal to N, it means that the work
// associated counter N has been completed by the GPU. The value of N to associate with
// commands can be retreived by calling GetCurrentFenceCounter().
u64 GetCompletedFenceCounter() const { return m_completed_fence_counter; }
// Gets the fence that will be signaled when the currently executing command buffer is
// queued and executed. Do not wait for this fence before the buffer is executed.
u64 GetCurrentFenceCounter() const { return m_frame_resources[m_current_frame].fence_counter; }
// Returns the semaphore for the current command buffer, which can be used to ensure the
// swap chain image is ready before the command buffer executes.
VkSemaphore GetCurrentCommandBufferSemaphore()
{
m_frame_resources[m_current_frame].semaphore_used = true;
return m_frame_resources[m_current_frame].semaphore;
}
// Ensure that the worker thread has submitted any previous command buffers and is idle.
void WaitForWorkerThreadIdle();
// Wait for a fence to be completed.
// Also invokes callbacks for completion.
void WaitForFenceCounter(u64 fence_counter);
void SubmitCommandBuffer(bool submit_on_worker_thread, bool wait_for_completion,
VkSwapchainKHR present_swap_chain = VK_NULL_HANDLE,
uint32_t present_image_index = 0xFFFFFFFF);
// Was the last present submitted to the queue a failure? If so, we must recreate our swapchain.
bool CheckLastPresentFail() { return m_last_present_failed.TestAndClear(); }
VkResult GetLastPresentResult() const { return m_last_present_result; }
// Schedule a vulkan resource for destruction later on. This will occur when the command buffer
// is next re-used, and the GPU has finished working with the specified resource.
void DeferBufferDestruction(VkBuffer object);
void DeferBufferViewDestruction(VkBufferView object);
void DeferDeviceMemoryDestruction(VkDeviceMemory object);
void DeferFramebufferDestruction(VkFramebuffer object);
void DeferImageDestruction(VkImage object);
void DeferImageViewDestruction(VkImageView object);
private:
bool CreateCommandBuffers();
void DestroyCommandBuffers();
bool CreateSubmitThread();
void WaitForCommandBufferCompletion(u32 command_buffer_index);
void SubmitCommandBuffer(u32 command_buffer_index, VkSwapchainKHR present_swap_chain,
u32 present_image_index);
void BeginCommandBuffer();
struct FrameResources
{
// [0] - Init (upload) command buffer, [1] - draw command buffer
VkCommandPool command_pool = VK_NULL_HANDLE;
std::array<VkCommandBuffer, 2> command_buffers = {};
VkDescriptorPool descriptor_pool = VK_NULL_HANDLE;
VkFence fence = VK_NULL_HANDLE;
VkSemaphore semaphore = VK_NULL_HANDLE;
u64 fence_counter = 0;
bool init_command_buffer_used = false;
bool semaphore_used = false;
std::vector<std::function<void()>> cleanup_resources;
};
u64 m_next_fence_counter = 1;
u64 m_completed_fence_counter = 0;
std::array<FrameResources, NUM_COMMAND_BUFFERS> m_frame_resources;
u32 m_current_frame;
// Threaded command buffer execution
// Semaphore determines when a command buffer can be queued
Common::Semaphore m_submit_semaphore;
std::thread m_submit_thread;
std::unique_ptr<Common::BlockingLoop> m_submit_loop;
struct PendingCommandBufferSubmit
{
VkSwapchainKHR present_swap_chain;
u32 present_image_index;
u32 command_buffer_index;
};
VkSemaphore m_present_semaphore = VK_NULL_HANDLE;
std::deque<PendingCommandBufferSubmit> m_pending_submits;
std::mutex m_pending_submit_lock;
Common::Flag m_last_present_failed;
VkResult m_last_present_result = VK_SUCCESS;
bool m_use_threaded_submission = false;
};
extern std::unique_ptr<CommandBufferManager> g_command_buffer_mgr;
} // namespace Vulkan