dolphin/Source/Core/VideoCommon/VertexLoaderX64.cpp
2015-05-25 08:46:12 -04:00

520 lines
15 KiB
C++

// Copyright 2015 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "Common/BitSet.h"
#include "Common/CPUDetect.h"
#include "Common/Intrinsics.h"
#include "Common/JitRegister.h"
#include "Common/x64ABI.h"
#include "VideoCommon/VertexLoaderX64.h"
using namespace Gen;
static const X64Reg src_reg = ABI_PARAM1;
static const X64Reg dst_reg = ABI_PARAM2;
static const X64Reg scratch1 = RAX;
static const X64Reg scratch2 = ABI_PARAM3;
static const X64Reg scratch3 = ABI_PARAM4;
static const X64Reg count_reg = R10;
static const X64Reg skipped_reg = R11;
VertexLoaderX64::VertexLoaderX64(const TVtxDesc& vtx_desc, const VAT& vtx_att) : VertexLoaderBase(vtx_desc, vtx_att)
{
if (!IsInitialized())
return;
AllocCodeSpace(4096);
ClearCodeSpace();
GenerateVertexLoader();
WriteProtect();
std::string name;
AppendToString(&name);
JitRegister::Register(region, GetCodePtr(), name.c_str());
}
OpArg VertexLoaderX64::GetVertexAddr(int array, u64 attribute)
{
OpArg data = MDisp(src_reg, m_src_ofs);
if (attribute & MASK_INDEXED)
{
if (attribute == INDEX8)
{
MOVZX(64, 8, scratch1, data);
m_src_ofs += 1;
}
else
{
MOV(16, R(scratch1), data);
m_src_ofs += 2;
BSWAP(16, scratch1);
MOVZX(64, 16, scratch1, R(scratch1));
}
if (array == ARRAY_POSITION)
{
CMP(attribute == INDEX8 ? 8 : 16, R(scratch1), Imm8(-1));
m_skip_vertex = J_CC(CC_E, true);
}
// TODO: Move cached_arraybases into CPState and use MDisp() relative to a constant register loaded with &g_main_cp_state.
IMUL(32, scratch1, M(&g_main_cp_state.array_strides[array]));
MOV(64, R(scratch2), M(&cached_arraybases[array]));
return MRegSum(scratch1, scratch2);
}
else
{
return data;
}
}
int VertexLoaderX64::ReadVertex(OpArg data, u64 attribute, int format, int count_in, int count_out, bool dequantize, u8 scaling_exponent, AttributeFormat* native_format)
{
static const __m128i shuffle_lut[4][3] = {
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF00L), // 1x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFF01L, 0xFFFFFF00L), // 2x u8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFF02L, 0xFFFFFF01L, 0xFFFFFF00L)}, // 3x u8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x00FFFFFFL), // 1x s8
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL), // 2x s8
_mm_set_epi32(0xFFFFFFFFL, 0x02FFFFFFL, 0x01FFFFFFL, 0x00FFFFFFL)}, // 3x s8
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0001L), // 1x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFF0203L, 0xFFFF0001L), // 2x u16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFF0405L, 0xFFFF0203L, 0xFFFF0001L)}, // 3x u16
{_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0xFFFFFFFFL, 0x0001FFFFL), // 1x s16
_mm_set_epi32(0xFFFFFFFFL, 0xFFFFFFFFL, 0x0203FFFFL, 0x0001FFFFL), // 2x s16
_mm_set_epi32(0xFFFFFFFFL, 0x0405FFFFL, 0x0203FFFFL, 0x0001FFFFL)}, // 3x s16
};
static const __m128 scale_factors[32] = {
_mm_set_ps1(1./(1u<< 0)), _mm_set_ps1(1./(1u<< 1)), _mm_set_ps1(1./(1u<< 2)), _mm_set_ps1(1./(1u<< 3)),
_mm_set_ps1(1./(1u<< 4)), _mm_set_ps1(1./(1u<< 5)), _mm_set_ps1(1./(1u<< 6)), _mm_set_ps1(1./(1u<< 7)),
_mm_set_ps1(1./(1u<< 8)), _mm_set_ps1(1./(1u<< 9)), _mm_set_ps1(1./(1u<<10)), _mm_set_ps1(1./(1u<<11)),
_mm_set_ps1(1./(1u<<12)), _mm_set_ps1(1./(1u<<13)), _mm_set_ps1(1./(1u<<14)), _mm_set_ps1(1./(1u<<15)),
_mm_set_ps1(1./(1u<<16)), _mm_set_ps1(1./(1u<<17)), _mm_set_ps1(1./(1u<<18)), _mm_set_ps1(1./(1u<<19)),
_mm_set_ps1(1./(1u<<20)), _mm_set_ps1(1./(1u<<21)), _mm_set_ps1(1./(1u<<22)), _mm_set_ps1(1./(1u<<23)),
_mm_set_ps1(1./(1u<<24)), _mm_set_ps1(1./(1u<<25)), _mm_set_ps1(1./(1u<<26)), _mm_set_ps1(1./(1u<<27)),
_mm_set_ps1(1./(1u<<28)), _mm_set_ps1(1./(1u<<29)), _mm_set_ps1(1./(1u<<30)), _mm_set_ps1(1./(1u<<31)),
};
X64Reg coords = XMM0;
int elem_size = 1 << (format / 2);
int load_bytes = elem_size * count_in;
OpArg dest = MDisp(dst_reg, m_dst_ofs);
native_format->components = count_out;
native_format->enable = true;
native_format->offset = m_dst_ofs;
native_format->type = VAR_FLOAT;
native_format->integer = false;
m_dst_ofs += sizeof(float) * count_out;
if (attribute == DIRECT)
m_src_ofs += load_bytes;
if (format == FORMAT_FLOAT)
{
// Floats don't need to be scaled or converted,
// so we can just load/swap/store them directly
// and return early.
for (int i = 0; i < count_in; i++)
{
LoadAndSwap(32, scratch3, data);
MOV(32, dest, R(scratch3));
data.AddMemOffset(sizeof(float));
dest.AddMemOffset(sizeof(float));
}
return load_bytes;
}
if (cpu_info.bSSSE3)
{
if (load_bytes > 8)
MOVDQU(coords, data);
else if (load_bytes > 4)
MOVQ_xmm(coords, data);
else
MOVD_xmm(coords, data);
PSHUFB(coords, M(&shuffle_lut[format][count_in - 1]));
// Sign-extend.
if (format == FORMAT_BYTE)
PSRAD(coords, 24);
if (format == FORMAT_SHORT)
PSRAD(coords, 16);
}
else
{
// SSE2
X64Reg temp = XMM1;
switch (format)
{
case FORMAT_UBYTE:
MOVD_xmm(coords, data);
PXOR(temp, R(temp));
PUNPCKLBW(coords, R(temp));
PUNPCKLWD(coords, R(temp));
break;
case FORMAT_BYTE:
MOVD_xmm(coords, data);
PUNPCKLBW(coords, R(coords));
PUNPCKLWD(coords, R(coords));
PSRAD(coords, 24);
break;
case FORMAT_USHORT:
case FORMAT_SHORT:
switch (count_in)
{
case 1:
LoadAndSwap(32, scratch3, data);
MOVD_xmm(coords, R(scratch3)); // ......X.
break;
case 2:
LoadAndSwap(32, scratch3, data);
MOVD_xmm(coords, R(scratch3)); // ......XY
PSHUFLW(coords, R(coords), 0x24); // ....Y.X.
break;
case 3:
LoadAndSwap(64, scratch3, data);
MOVQ_xmm(coords, R(scratch3)); // ....XYZ.
PUNPCKLQDQ(coords, R(coords)); // ..Z.XYZ.
PSHUFLW(coords, R(coords), 0xAC); // ..Z.Y.X.
break;
}
if (format == FORMAT_SHORT)
PSRAD(coords, 16);
else
PSRLD(coords, 16);
break;
}
}
CVTDQ2PS(coords, R(coords));
if (dequantize && scaling_exponent)
MULPS(coords, M(&scale_factors[scaling_exponent]));
switch (count_out)
{
case 1: MOVSS(dest, coords); break;
case 2: MOVLPS(dest, coords); break;
case 3: MOVUPS(dest, coords); break;
}
return load_bytes;
}
void VertexLoaderX64::ReadColor(OpArg data, u64 attribute, int format)
{
int load_bytes = 0;
switch (format)
{
case FORMAT_24B_888:
case FORMAT_32B_888x:
case FORMAT_32B_8888:
MOV(32, R(scratch1), data);
if (format != FORMAT_32B_8888)
OR(32, R(scratch1), Imm32(0xFF000000));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
load_bytes = 3 + (format != FORMAT_24B_888);
break;
case FORMAT_16B_565:
// RRRRRGGG GGGBBBBB
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI1 && cpu_info.bBMI2)
{
MOV(32, R(scratch2), Imm32(0x07C3F7C0));
PDEP(32, scratch3, scratch1, R(scratch2));
MOV(32, R(scratch2), Imm32(0xF8FCF800));
PDEP(32, scratch1, scratch1, R(scratch2));
ANDN(32, scratch2, scratch2, R(scratch3));
OR(32, R(scratch1), R(scratch2));
}
else
{
MOV(32, R(scratch3), R(scratch1));
SHL(32, R(scratch1), Imm8(16));
AND(32, R(scratch1), Imm32(0xF8000000));
MOV(32, R(scratch2), R(scratch3));
SHL(32, R(scratch2), Imm8(13));
AND(32, R(scratch2), Imm32(0x00FC0000));
OR(32, R(scratch1), R(scratch2));
SHL(32, R(scratch3), Imm8(11));
AND(32, R(scratch3), Imm32(0x0000F800));
OR(32, R(scratch1), R(scratch3));
MOV(32, R(scratch2), R(scratch1));
SHR(32, R(scratch1), Imm8(5));
AND(32, R(scratch1), Imm32(0x07000700));
OR(32, R(scratch1), R(scratch2));
SHR(32, R(scratch2), Imm8(6));
AND(32, R(scratch2), Imm32(0x00030000));
OR(32, R(scratch1), R(scratch2));
}
OR(32, R(scratch1), Imm32(0x000000FF));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case FORMAT_16B_4444:
// RRRRGGGG BBBBAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
LoadAndSwap(16, scratch1, data);
if (cpu_info.bBMI2)
{
MOV(32, R(scratch3), Imm32(0x0F0F0F0F));
PDEP(32, scratch2, scratch1, R(scratch3));
MOV(32, R(scratch3), Imm32(0xF0F0F0F0));
PDEP(32, scratch1, scratch1, R(scratch3));
}
else
{
MOV(32, R(scratch3), R(scratch1));
SHL(32, R(scratch1), Imm8(12));
AND(32, R(scratch1), Imm32(0x0F000000));
MOV(32, R(scratch2), R(scratch1));
MOV(32, R(scratch1), R(scratch3));
SHL(32, R(scratch1), Imm8(8));
AND(32, R(scratch1), Imm32(0x000F0000));
OR(32, R(scratch2), R(scratch1));
MOV(32, R(scratch1), R(scratch3));
SHL(32, R(scratch1), Imm8(4));
AND(32, R(scratch1), Imm32(0x00000F00));
OR(32, R(scratch2), R(scratch1));
AND(32, R(scratch3), Imm8(0x0F));
OR(32, R(scratch2), R(scratch3));
MOV(32, R(scratch1), R(scratch2));
SHL(32, R(scratch1), Imm8(4));
}
OR(32, R(scratch1), R(scratch2));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 2;
break;
case FORMAT_24B_6666:
// RRRRRRGG GGGGBBBB BBAAAAAA
// AAAAAAAA BBBBBBBB GGGGGGGG RRRRRRRR
data.AddMemOffset(-1); // subtract one from address so we can use a 32bit load and bswap
LoadAndSwap(32, scratch1, data);
if (cpu_info.bBMI2)
{
MOV(32, R(scratch2), Imm32(0xFCFCFCFC));
PDEP(32, scratch1, scratch1, R(scratch2));
MOV(32, R(scratch2), R(scratch1));
}
else
{
MOV(32, R(scratch3), R(scratch1));
SHL(32, R(scratch1), Imm8(8));
AND(32, R(scratch1), Imm32(0xFC000000));
MOV(32, R(scratch2), R(scratch1));
MOV(32, R(scratch1), R(scratch3));
SHL(32, R(scratch1), Imm8(6));
AND(32, R(scratch1), Imm32(0x00FC0000));
OR(32, R(scratch2), R(scratch1));
MOV(32, R(scratch1), R(scratch3));
SHL(32, R(scratch1), Imm8(4));
AND(32, R(scratch1), Imm32(0x0000FC00));
OR(32, R(scratch2), R(scratch1));
SHL(32, R(scratch3), Imm8(2));
AND(32, R(scratch3), Imm32(0x000000FC));
OR(32, R(scratch2), R(scratch3));
MOV(32, R(scratch1), R(scratch2));
}
SHR(32, R(scratch1), Imm8(6));
AND(32, R(scratch1), Imm32(0x03030303));
OR(32, R(scratch1), R(scratch2));
SwapAndStore(32, MDisp(dst_reg, m_dst_ofs), scratch1);
load_bytes = 3;
break;
}
if (attribute == DIRECT)
m_src_ofs += load_bytes;
}
void VertexLoaderX64::GenerateVertexLoader()
{
BitSet32 xmm_regs;
xmm_regs[XMM0+16] = true;
xmm_regs[XMM1+16] = !cpu_info.bSSSE3;
ABI_PushRegistersAndAdjustStack(xmm_regs, 8);
// Backup count since we're going to count it down.
PUSH(32, R(ABI_PARAM3));
// ABI_PARAM3 is one of the lower registers, so free it for scratch2.
MOV(32, R(count_reg), R(ABI_PARAM3));
if (m_VtxDesc.Position & MASK_INDEXED)
XOR(32, R(skipped_reg), R(skipped_reg));
// TODO: load constants into registers outside the main loop
const u8* loop_start = GetCodePtr();
if (m_VtxDesc.PosMatIdx)
{
MOVZX(32, 8, scratch1, MDisp(src_reg, m_src_ofs));
AND(32, R(scratch1), Imm8(0x3F));
MOV(32, MDisp(dst_reg, m_dst_ofs), R(scratch1));
m_native_components |= VB_HAS_POSMTXIDX;
m_native_vtx_decl.posmtx.components = 4;
m_native_vtx_decl.posmtx.enable = true;
m_native_vtx_decl.posmtx.offset = m_dst_ofs;
m_native_vtx_decl.posmtx.type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.posmtx.integer = true;
m_src_ofs += sizeof(u8);
m_dst_ofs += sizeof(u32);
}
u32 texmatidx_ofs[8];
const u64 tm[8] = {
m_VtxDesc.Tex0MatIdx, m_VtxDesc.Tex1MatIdx, m_VtxDesc.Tex2MatIdx, m_VtxDesc.Tex3MatIdx,
m_VtxDesc.Tex4MatIdx, m_VtxDesc.Tex5MatIdx, m_VtxDesc.Tex6MatIdx, m_VtxDesc.Tex7MatIdx,
};
for (int i = 0; i < 8; i++)
{
if (tm[i])
texmatidx_ofs[i] = m_src_ofs++;
}
OpArg data = GetVertexAddr(ARRAY_POSITION, m_VtxDesc.Position);
int pos_elements = 2 + m_VtxAttr.PosElements;
ReadVertex(data, m_VtxDesc.Position, m_VtxAttr.PosFormat, pos_elements, pos_elements,
m_VtxAttr.ByteDequant, m_VtxAttr.PosFrac, &m_native_vtx_decl.position);
if (m_VtxDesc.Normal)
{
static const u8 map[8] = { 7, 6, 15, 14 };
u8 scaling_exponent = map[m_VtxAttr.NormalFormat];
for (int i = 0; i < (m_VtxAttr.NormalElements ? 3 : 1); i++)
{
if (!i || m_VtxAttr.NormalIndex3)
{
data = GetVertexAddr(ARRAY_NORMAL, m_VtxDesc.Normal);
int elem_size = 1 << (m_VtxAttr.NormalFormat / 2);
data.AddMemOffset(i * elem_size * 3);
}
data.AddMemOffset(ReadVertex(data, m_VtxDesc.Normal, m_VtxAttr.NormalFormat, 3, 3,
true, scaling_exponent, &m_native_vtx_decl.normals[i]));
}
m_native_components |= VB_HAS_NRM0;
if (m_VtxAttr.NormalElements)
m_native_components |= VB_HAS_NRM1 | VB_HAS_NRM2;
}
const u64 col[2] = { m_VtxDesc.Color0, m_VtxDesc.Color1 };
for (int i = 0; i < 2; i++)
{
if (col[i])
{
data = GetVertexAddr(ARRAY_COLOR + i, col[i]);
ReadColor(data, col[i], m_VtxAttr.color[i].Comp);
m_native_components |= VB_HAS_COL0 << i;
m_native_vtx_decl.colors[i].components = 4;
m_native_vtx_decl.colors[i].enable = true;
m_native_vtx_decl.colors[i].offset = m_dst_ofs;
m_native_vtx_decl.colors[i].type = VAR_UNSIGNED_BYTE;
m_native_vtx_decl.colors[i].integer = false;
m_dst_ofs += 4;
}
}
const u64 tc[8] = {
m_VtxDesc.Tex0Coord, m_VtxDesc.Tex1Coord, m_VtxDesc.Tex2Coord, m_VtxDesc.Tex3Coord,
m_VtxDesc.Tex4Coord, m_VtxDesc.Tex5Coord, m_VtxDesc.Tex6Coord, m_VtxDesc.Tex7Coord,
};
for (int i = 0; i < 8; i++)
{
int elements = m_VtxAttr.texCoord[i].Elements + 1;
if (tc[i])
{
data = GetVertexAddr(ARRAY_TEXCOORD0 + i, tc[i]);
u8 scaling_exponent = m_VtxAttr.texCoord[i].Frac;
ReadVertex(data, tc[i], m_VtxAttr.texCoord[i].Format, elements, tm[i] ? 2 : elements,
m_VtxAttr.ByteDequant, scaling_exponent, &m_native_vtx_decl.texcoords[i]);
m_native_components |= VB_HAS_UV0 << i;
}
if (tm[i])
{
m_native_components |= VB_HAS_TEXMTXIDX0 << i;
m_native_vtx_decl.texcoords[i].components = 3;
m_native_vtx_decl.texcoords[i].enable = true;
m_native_vtx_decl.texcoords[i].type = VAR_FLOAT;
m_native_vtx_decl.texcoords[i].integer = false;
MOVZX(64, 8, scratch1, MDisp(src_reg, texmatidx_ofs[i]));
if (tc[i])
{
CVTSI2SS(XMM0, R(scratch1));
MOVSS(MDisp(dst_reg, m_dst_ofs), XMM0);
m_dst_ofs += sizeof(float);
}
else
{
m_native_vtx_decl.texcoords[i].offset = m_dst_ofs;
PXOR(XMM0, R(XMM0));
CVTSI2SS(XMM0, R(scratch1));
SHUFPS(XMM0, R(XMM0), 0x45); // 000X -> 0X00
MOVUPS(MDisp(dst_reg, m_dst_ofs), XMM0);
m_dst_ofs += sizeof(float) * 3;
}
}
}
// Prepare for the next vertex.
ADD(64, R(dst_reg), Imm32(m_dst_ofs));
const u8* cont = GetCodePtr();
ADD(64, R(src_reg), Imm32(m_src_ofs));
SUB(32, R(count_reg), Imm8(1));
J_CC(CC_NZ, loop_start);
// Get the original count.
POP(32, R(ABI_RETURN));
ABI_PopRegistersAndAdjustStack(xmm_regs, 8);
if (m_VtxDesc.Position & MASK_INDEXED)
{
SUB(32, R(ABI_RETURN), R(skipped_reg));
RET();
SetJumpTarget(m_skip_vertex);
ADD(32, R(skipped_reg), Imm8(1));
JMP(cont);
}
else
{
RET();
}
m_VertexSize = m_src_ofs;
m_native_vtx_decl.stride = m_dst_ofs;
}
int VertexLoaderX64::RunVertices(DataReader src, DataReader dst, int count)
{
m_numLoadedVertices += count;
return ((int (*)(u8* src, u8* dst, int count))region)(src.GetPointer(), dst.GetPointer(), count);
}