mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2024-12-30 21:40:57 +01:00
8268ae1cf7
VideoCommon: add xfbs hashes to present info if available
902 lines
30 KiB
C++
902 lines
30 KiB
C++
// Copyright 2023 Dolphin Emulator Project
|
|
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
|
|
#include "VideoCommon/Present.h"
|
|
|
|
#include "Common/ChunkFile.h"
|
|
#include "Core/Config/GraphicsSettings.h"
|
|
#include "Core/HW/VideoInterface.h"
|
|
#include "Core/Host.h"
|
|
#include "Core/System.h"
|
|
|
|
#include "InputCommon/ControllerInterface/ControllerInterface.h"
|
|
|
|
#include "Present.h"
|
|
#include "VideoCommon/AbstractGfx.h"
|
|
#include "VideoCommon/FrameDumper.h"
|
|
#include "VideoCommon/FramebufferManager.h"
|
|
#include "VideoCommon/OnScreenUI.h"
|
|
#include "VideoCommon/PostProcessing.h"
|
|
#include "VideoCommon/Statistics.h"
|
|
#include "VideoCommon/VertexManagerBase.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/VideoEvents.h"
|
|
#include "VideoCommon/Widescreen.h"
|
|
|
|
std::unique_ptr<VideoCommon::Presenter> g_presenter;
|
|
|
|
namespace VideoCommon
|
|
{
|
|
// Stretches the native/internal analog resolution aspect ratio from ~4:3 to ~16:9
|
|
static float SourceAspectRatioToWidescreen(float source_aspect)
|
|
{
|
|
return source_aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
|
|
}
|
|
|
|
static std::tuple<int, int> FindClosestIntegerResolution(float width, float height,
|
|
float aspect_ratio)
|
|
{
|
|
// We can't round both the x and y resolution as that might generate an aspect ratio
|
|
// further away from the target one, we also can't either ceil or floor both sides,
|
|
// so we find the combination or flooring and ceiling that is closest to the target ar.
|
|
const int ceiled_width = static_cast<int>(std::ceil(width));
|
|
const int ceiled_height = static_cast<int>(std::ceil(height));
|
|
const int floored_width = static_cast<int>(std::floor(width));
|
|
const int floored_height = static_cast<int>(std::floor(height));
|
|
|
|
int int_width = floored_width;
|
|
int int_height = floored_height;
|
|
|
|
float min_aspect_ratio_distance = std::numeric_limits<float>::max();
|
|
for (const int new_width : std::array<int, 2>{ceiled_width, floored_width})
|
|
{
|
|
for (const int new_height : std::array<int, 2>{ceiled_height, floored_height})
|
|
{
|
|
const float new_aspect_ratio = static_cast<float>(new_width) / new_height;
|
|
const float aspect_ratio_distance = std::abs((new_aspect_ratio / aspect_ratio) - 1.f);
|
|
if (aspect_ratio_distance < min_aspect_ratio_distance)
|
|
{
|
|
min_aspect_ratio_distance = aspect_ratio_distance;
|
|
int_width = new_width;
|
|
int_height = new_height;
|
|
}
|
|
}
|
|
}
|
|
|
|
return std::make_tuple(int_width, int_height);
|
|
}
|
|
|
|
static void TryToSnapToXFBSize(int& width, int& height, int xfb_width, int xfb_height)
|
|
{
|
|
// Screen is blanking (e.g. game booting up), nothing to do here
|
|
if (xfb_width == 0 || xfb_height == 0)
|
|
return;
|
|
|
|
// If there's only 1 pixel of either horizontal or vertical resolution difference,
|
|
// make the output size match a multiple of the XFB native resolution,
|
|
// to achieve the highest quality (least scaling).
|
|
// The reason why the threshold is 1 pixel (per internal resolution multiplier) is because of
|
|
// minor inaccuracies of the VI aspect ratio (and because some resolutions are rounded
|
|
// while other are floored).
|
|
const unsigned int efb_scale = g_framebuffer_manager->GetEFBScale();
|
|
const unsigned int pixel_difference_width = std::abs(width - xfb_width);
|
|
const unsigned int pixel_difference_height = std::abs(height - xfb_height);
|
|
// We ignore this if there's an offset on both hor and ver size,
|
|
// as then we'd be changing the aspect ratio too much and would need to
|
|
// re-calculate a lot of stuff (like black bars).
|
|
if ((pixel_difference_width <= efb_scale && pixel_difference_height == 0) ||
|
|
(pixel_difference_height <= efb_scale && pixel_difference_width == 0))
|
|
{
|
|
width = xfb_width;
|
|
height = xfb_height;
|
|
}
|
|
}
|
|
|
|
Presenter::Presenter()
|
|
{
|
|
m_config_changed =
|
|
ConfigChangedEvent::Register([this](u32 bits) { ConfigChanged(bits); }, "Presenter");
|
|
}
|
|
|
|
Presenter::~Presenter()
|
|
{
|
|
// Disable ControllerInterface's aspect ratio adjustments so mapping dialog behaves normally.
|
|
g_controller_interface.SetAspectRatioAdjustment(1);
|
|
}
|
|
|
|
bool Presenter::Initialize()
|
|
{
|
|
UpdateDrawRectangle();
|
|
|
|
if (!g_gfx->IsHeadless())
|
|
{
|
|
SetBackbuffer(g_gfx->GetSurfaceInfo());
|
|
|
|
m_post_processor = std::make_unique<VideoCommon::PostProcessing>();
|
|
if (!m_post_processor->Initialize(m_backbuffer_format))
|
|
return false;
|
|
|
|
m_onscreen_ui = std::make_unique<OnScreenUI>();
|
|
if (!m_onscreen_ui->Initialize(m_backbuffer_width, m_backbuffer_height, m_backbuffer_scale))
|
|
return false;
|
|
|
|
// Draw a blank frame (and complete OnScreenUI initialization)
|
|
g_gfx->BindBackbuffer({{0.0f, 0.0f, 0.0f, 1.0f}});
|
|
g_gfx->PresentBackbuffer();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool Presenter::FetchXFB(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
|
|
{
|
|
ReleaseXFBContentLock();
|
|
u64 old_xfb_id = m_last_xfb_id;
|
|
|
|
if (fb_width == 0 || fb_height == 0)
|
|
{
|
|
// Game is blanking the screen
|
|
m_xfb_entry.reset();
|
|
m_xfb_rect = MathUtil::Rectangle<int>();
|
|
m_last_xfb_id = std::numeric_limits<u64>::max();
|
|
}
|
|
else
|
|
{
|
|
m_xfb_entry =
|
|
g_texture_cache->GetXFBTexture(xfb_addr, fb_width, fb_height, fb_stride, &m_xfb_rect);
|
|
m_last_xfb_id = m_xfb_entry->id;
|
|
|
|
m_xfb_entry->AcquireContentLock();
|
|
}
|
|
m_last_xfb_addr = xfb_addr;
|
|
m_last_xfb_ticks = ticks;
|
|
m_last_xfb_width = fb_width;
|
|
m_last_xfb_stride = fb_stride;
|
|
m_last_xfb_height = fb_height;
|
|
|
|
return old_xfb_id == m_last_xfb_id;
|
|
}
|
|
|
|
void Presenter::ViSwap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
|
|
{
|
|
bool is_duplicate = FetchXFB(xfb_addr, fb_width, fb_stride, fb_height, ticks);
|
|
|
|
PresentInfo present_info;
|
|
present_info.emulated_timestamp = ticks;
|
|
present_info.present_count = m_present_count++;
|
|
if (is_duplicate)
|
|
{
|
|
present_info.frame_count = m_frame_count - 1; // Previous frame
|
|
present_info.reason = PresentInfo::PresentReason::VideoInterfaceDuplicate;
|
|
}
|
|
else
|
|
{
|
|
present_info.frame_count = m_frame_count++;
|
|
present_info.reason = PresentInfo::PresentReason::VideoInterface;
|
|
}
|
|
|
|
if (m_xfb_entry)
|
|
{
|
|
// With no references, this XFB copy wasn't stitched together
|
|
// so just use its name directly
|
|
if (m_xfb_entry->references.empty())
|
|
{
|
|
if (!m_xfb_entry->texture_info_name.empty())
|
|
present_info.xfb_copy_hashes.push_back(m_xfb_entry->texture_info_name);
|
|
}
|
|
else
|
|
{
|
|
for (const auto& reference : m_xfb_entry->references)
|
|
{
|
|
if (!reference->texture_info_name.empty())
|
|
present_info.xfb_copy_hashes.push_back(reference->texture_info_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
BeforePresentEvent::Trigger(present_info);
|
|
|
|
if (!is_duplicate || !g_ActiveConfig.bSkipPresentingDuplicateXFBs)
|
|
{
|
|
Present();
|
|
ProcessFrameDumping(ticks);
|
|
|
|
AfterPresentEvent::Trigger(present_info);
|
|
}
|
|
}
|
|
|
|
void Presenter::ImmediateSwap(u32 xfb_addr, u32 fb_width, u32 fb_stride, u32 fb_height, u64 ticks)
|
|
{
|
|
FetchXFB(xfb_addr, fb_width, fb_stride, fb_height, ticks);
|
|
|
|
PresentInfo present_info;
|
|
present_info.emulated_timestamp = ticks; // TODO: This should be the time of the next VI field
|
|
present_info.frame_count = m_frame_count++;
|
|
present_info.reason = PresentInfo::PresentReason::Immediate;
|
|
present_info.present_count = m_present_count++;
|
|
|
|
BeforePresentEvent::Trigger(present_info);
|
|
|
|
Present();
|
|
ProcessFrameDumping(ticks);
|
|
|
|
AfterPresentEvent::Trigger(present_info);
|
|
}
|
|
|
|
void Presenter::ProcessFrameDumping(u64 ticks) const
|
|
{
|
|
if (g_frame_dumper->IsFrameDumping() && m_xfb_entry)
|
|
{
|
|
MathUtil::Rectangle<int> target_rect;
|
|
switch (g_ActiveConfig.frame_dumps_resolution_type)
|
|
{
|
|
default:
|
|
case FrameDumpResolutionType::WindowResolution:
|
|
{
|
|
if (!g_gfx->IsHeadless())
|
|
{
|
|
target_rect = GetTargetRectangle();
|
|
break;
|
|
}
|
|
[[fallthrough]];
|
|
}
|
|
case FrameDumpResolutionType::XFBAspectRatioCorrectedResolution:
|
|
{
|
|
target_rect = m_xfb_rect;
|
|
const bool allow_stretch = false;
|
|
auto [float_width, float_height] =
|
|
ScaleToDisplayAspectRatio(m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight(), allow_stretch);
|
|
const float draw_aspect_ratio = CalculateDrawAspectRatio(allow_stretch);
|
|
auto [int_width, int_height] =
|
|
FindClosestIntegerResolution(float_width, float_height, draw_aspect_ratio);
|
|
target_rect = MathUtil::Rectangle<int>(0, 0, int_width, int_height);
|
|
break;
|
|
}
|
|
case FrameDumpResolutionType::XFBRawResolution:
|
|
{
|
|
target_rect = m_xfb_rect;
|
|
break;
|
|
}
|
|
}
|
|
|
|
int width = target_rect.GetWidth();
|
|
int height = target_rect.GetHeight();
|
|
|
|
const int resolution_lcm = g_frame_dumper->GetRequiredResolutionLeastCommonMultiple();
|
|
|
|
// Ensure divisibility by the dumper LCM and a min of 1 to make it compatible with all the
|
|
// video encoders. Note that this is theoretically only necessary when recording videos and not
|
|
// screenshots.
|
|
// We always scale positively to make sure the least amount of information is lost.
|
|
//
|
|
// TODO: this should be added as black padding on the edges by the frame dumper.
|
|
if ((width % resolution_lcm) != 0 || width == 0)
|
|
width += resolution_lcm - (width % resolution_lcm);
|
|
if ((height % resolution_lcm) != 0 || height == 0)
|
|
height += resolution_lcm - (height % resolution_lcm);
|
|
|
|
// Remove any black borders, there would be no point in including them in the recording
|
|
target_rect.left = 0;
|
|
target_rect.top = 0;
|
|
target_rect.right = width;
|
|
target_rect.bottom = height;
|
|
|
|
// TODO: any scaling done by this won't be gamma corrected,
|
|
// we should either apply post processing as well, or port its gamma correction code
|
|
g_frame_dumper->DumpCurrentFrame(m_xfb_entry->texture.get(), m_xfb_rect, target_rect, ticks,
|
|
m_frame_count);
|
|
}
|
|
}
|
|
|
|
void Presenter::SetBackbuffer(int backbuffer_width, int backbuffer_height)
|
|
{
|
|
const bool is_first = m_backbuffer_width == 0 && m_backbuffer_height == 0;
|
|
const bool size_changed =
|
|
(m_backbuffer_width != backbuffer_width || m_backbuffer_height != backbuffer_height);
|
|
m_backbuffer_width = backbuffer_width;
|
|
m_backbuffer_height = backbuffer_height;
|
|
UpdateDrawRectangle();
|
|
|
|
OnBackbufferSet(size_changed, is_first);
|
|
}
|
|
|
|
void Presenter::SetBackbuffer(SurfaceInfo info)
|
|
{
|
|
const bool is_first = m_backbuffer_width == 0 && m_backbuffer_height == 0;
|
|
const bool size_changed =
|
|
(m_backbuffer_width != (int)info.width || m_backbuffer_height != (int)info.height);
|
|
m_backbuffer_width = info.width;
|
|
m_backbuffer_height = info.height;
|
|
m_backbuffer_scale = info.scale;
|
|
m_backbuffer_format = info.format;
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->SetScale(info.scale);
|
|
|
|
OnBackbufferSet(size_changed, is_first);
|
|
}
|
|
|
|
void Presenter::OnBackbufferSet(bool size_changed, bool is_first_set)
|
|
{
|
|
UpdateDrawRectangle();
|
|
|
|
// Automatically update the resolution scale if the window size changed,
|
|
// or if the game XFB resolution changed.
|
|
if (size_changed && !is_first_set && g_ActiveConfig.iEFBScale == EFB_SCALE_AUTO_INTEGRAL &&
|
|
m_auto_resolution_scale != AutoIntegralScale())
|
|
{
|
|
g_framebuffer_manager->RecreateEFBFramebuffer();
|
|
}
|
|
if (size_changed || is_first_set)
|
|
{
|
|
m_auto_resolution_scale = AutoIntegralScale();
|
|
}
|
|
}
|
|
|
|
void Presenter::ConfigChanged(u32 changed_bits)
|
|
{
|
|
// Check for post-processing shader changes. Done up here as it doesn't affect anything outside
|
|
// the post-processor. Note that options are applied every frame, so no need to check those.
|
|
if (changed_bits & ConfigChangeBits::CONFIG_CHANGE_BIT_POST_PROCESSING_SHADER && m_post_processor)
|
|
{
|
|
// The existing shader must not be in use when it's destroyed
|
|
g_gfx->WaitForGPUIdle();
|
|
|
|
m_post_processor->RecompileShader();
|
|
}
|
|
|
|
// Stereo mode change requires recompiling our post processing pipeline and imgui pipelines for
|
|
// rendering the UI.
|
|
if (changed_bits & ConfigChangeBits::CONFIG_CHANGE_BIT_STEREO_MODE)
|
|
{
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->RecompileImGuiPipeline();
|
|
if (m_post_processor)
|
|
m_post_processor->RecompilePipeline();
|
|
}
|
|
}
|
|
|
|
std::tuple<MathUtil::Rectangle<int>, MathUtil::Rectangle<int>>
|
|
Presenter::ConvertStereoRectangle(const MathUtil::Rectangle<int>& rc) const
|
|
{
|
|
// Resize target to half its original size
|
|
auto draw_rc = rc;
|
|
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
|
|
{
|
|
// The height may be negative due to flipped rectangles
|
|
int height = rc.bottom - rc.top;
|
|
draw_rc.top += height / 4;
|
|
draw_rc.bottom -= height / 4;
|
|
}
|
|
else
|
|
{
|
|
int width = rc.right - rc.left;
|
|
draw_rc.left += width / 4;
|
|
draw_rc.right -= width / 4;
|
|
}
|
|
|
|
// Create two target rectangle offset to the sides of the backbuffer
|
|
auto left_rc = draw_rc;
|
|
auto right_rc = draw_rc;
|
|
if (g_ActiveConfig.stereo_mode == StereoMode::TAB)
|
|
{
|
|
left_rc.top -= m_backbuffer_height / 4;
|
|
left_rc.bottom -= m_backbuffer_height / 4;
|
|
right_rc.top += m_backbuffer_height / 4;
|
|
right_rc.bottom += m_backbuffer_height / 4;
|
|
}
|
|
else
|
|
{
|
|
left_rc.left -= m_backbuffer_width / 4;
|
|
left_rc.right -= m_backbuffer_width / 4;
|
|
right_rc.left += m_backbuffer_width / 4;
|
|
right_rc.right += m_backbuffer_width / 4;
|
|
}
|
|
|
|
return std::make_tuple(left_rc, right_rc);
|
|
}
|
|
|
|
float Presenter::CalculateDrawAspectRatio(bool allow_stretch) const
|
|
{
|
|
auto aspect_mode = g_ActiveConfig.aspect_mode;
|
|
|
|
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
|
|
aspect_mode = AspectMode::Auto;
|
|
|
|
// If stretch is enabled, we prefer the aspect ratio of the window.
|
|
if (aspect_mode == AspectMode::Stretch)
|
|
return (static_cast<float>(m_backbuffer_width) / static_cast<float>(m_backbuffer_height));
|
|
|
|
// The actual aspect ratio of the XFB texture is irrelevant, the VI one is the one that matters
|
|
const auto& vi = Core::System::GetInstance().GetVideoInterface();
|
|
const float source_aspect_ratio = vi.GetAspectRatio();
|
|
|
|
// This will scale up the source ~4:3 resolution to its equivalent ~16:9 resolution
|
|
if (aspect_mode == AspectMode::ForceWide ||
|
|
(aspect_mode == AspectMode::Auto && g_widescreen->IsGameWidescreen()))
|
|
{
|
|
return SourceAspectRatioToWidescreen(source_aspect_ratio);
|
|
}
|
|
else if (aspect_mode == AspectMode::Custom)
|
|
{
|
|
return source_aspect_ratio * (g_ActiveConfig.GetCustomAspectRatio() / (4.0f / 3.0f));
|
|
}
|
|
// For the "custom stretch" mode, we force the exact target aspect ratio, without
|
|
// acknowleding the difference between the source aspect ratio and 4:3.
|
|
else if (aspect_mode == AspectMode::CustomStretch)
|
|
{
|
|
return g_ActiveConfig.GetCustomAspectRatio();
|
|
}
|
|
else if (aspect_mode == AspectMode::Raw)
|
|
{
|
|
return m_xfb_entry ? (static_cast<float>(m_last_xfb_width) / m_last_xfb_height) : 1.f;
|
|
}
|
|
|
|
return source_aspect_ratio;
|
|
}
|
|
|
|
void Presenter::AdjustRectanglesToFitBounds(MathUtil::Rectangle<int>* target_rect,
|
|
MathUtil::Rectangle<int>* source_rect, int fb_width,
|
|
int fb_height)
|
|
{
|
|
const int orig_target_width = target_rect->GetWidth();
|
|
const int orig_target_height = target_rect->GetHeight();
|
|
const int orig_source_width = source_rect->GetWidth();
|
|
const int orig_source_height = source_rect->GetHeight();
|
|
if (target_rect->left < 0)
|
|
{
|
|
const int offset = -target_rect->left;
|
|
target_rect->left = 0;
|
|
source_rect->left += offset * orig_source_width / orig_target_width;
|
|
}
|
|
if (target_rect->right > fb_width)
|
|
{
|
|
const int offset = target_rect->right - fb_width;
|
|
target_rect->right -= offset;
|
|
source_rect->right -= offset * orig_source_width / orig_target_width;
|
|
}
|
|
if (target_rect->top < 0)
|
|
{
|
|
const int offset = -target_rect->top;
|
|
target_rect->top = 0;
|
|
source_rect->top += offset * orig_source_height / orig_target_height;
|
|
}
|
|
if (target_rect->bottom > fb_height)
|
|
{
|
|
const int offset = target_rect->bottom - fb_height;
|
|
target_rect->bottom -= offset;
|
|
source_rect->bottom -= offset * orig_source_height / orig_target_height;
|
|
}
|
|
}
|
|
|
|
void Presenter::ReleaseXFBContentLock()
|
|
{
|
|
if (m_xfb_entry)
|
|
m_xfb_entry->ReleaseContentLock();
|
|
}
|
|
|
|
void Presenter::ChangeSurface(void* new_surface_handle)
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_swap_mutex);
|
|
m_new_surface_handle = new_surface_handle;
|
|
m_surface_changed.Set();
|
|
}
|
|
|
|
void Presenter::ResizeSurface()
|
|
{
|
|
std::lock_guard<std::mutex> lock(m_swap_mutex);
|
|
m_surface_resized.Set();
|
|
}
|
|
|
|
void* Presenter::GetNewSurfaceHandle()
|
|
{
|
|
void* handle = m_new_surface_handle;
|
|
m_new_surface_handle = nullptr;
|
|
return handle;
|
|
}
|
|
|
|
u32 Presenter::AutoIntegralScale() const
|
|
{
|
|
// Take the source/native resolution (XFB) and stretch it on the target (window) aspect ratio.
|
|
// If the target resolution is larger (on either x or y), we scale the source
|
|
// by a integer multiplier until it won't have to be scaled up anymore.
|
|
// NOTE: this might conflict with "Config::MAIN_RENDER_WINDOW_AUTOSIZE",
|
|
// as they mutually influence each other.
|
|
u32 source_width = m_last_xfb_width;
|
|
u32 source_height = m_last_xfb_height;
|
|
const u32 target_width = m_target_rectangle.GetWidth();
|
|
const u32 target_height = m_target_rectangle.GetHeight();
|
|
const float source_aspect_ratio = (float)source_width / source_height;
|
|
const float target_aspect_ratio = (float)target_width / target_height;
|
|
if (source_aspect_ratio >= target_aspect_ratio)
|
|
source_width = std::round(source_height * target_aspect_ratio);
|
|
else
|
|
source_height = std::round(source_width / target_aspect_ratio);
|
|
const u32 width_scale =
|
|
source_width > 0 ? ((target_width + (source_width - 1)) / source_width) : 1;
|
|
const u32 height_scale =
|
|
source_height > 0 ? ((target_height + (source_height - 1)) / source_height) : 1;
|
|
// Limit to the max to avoid creating textures larger than their max supported resolution.
|
|
return std::min(std::max(width_scale, height_scale),
|
|
static_cast<u32>(Config::Get(Config::GFX_MAX_EFB_SCALE)));
|
|
}
|
|
|
|
void Presenter::SetSuggestedWindowSize(int width, int height)
|
|
{
|
|
// While trying to guess the best window resolution, we can't allow it to use the
|
|
// "AspectMode::Stretch" setting because that would self influence the output result,
|
|
// given it would be based on the previous frame resolution
|
|
const bool allow_stretch = false;
|
|
const auto [out_width, out_height] = CalculateOutputDimensions(width, height, allow_stretch);
|
|
|
|
// Track the last values of width/height to avoid sending a window resize event every frame.
|
|
if (out_width == m_last_window_request_width && out_height == m_last_window_request_height)
|
|
return;
|
|
|
|
m_last_window_request_width = out_width;
|
|
m_last_window_request_height = out_height;
|
|
// Pass in the suggested window size. This might not always be acknowledged.
|
|
Host_RequestRenderWindowSize(out_width, out_height);
|
|
}
|
|
|
|
// Crop to exact forced aspect ratios if enabled and not AspectMode::Stretch.
|
|
std::tuple<float, float> Presenter::ApplyStandardAspectCrop(float width, float height,
|
|
bool allow_stretch) const
|
|
{
|
|
auto aspect_mode = g_ActiveConfig.aspect_mode;
|
|
|
|
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
|
|
aspect_mode = AspectMode::Auto;
|
|
|
|
if (!g_ActiveConfig.bCrop || aspect_mode == AspectMode::Stretch || aspect_mode == AspectMode::Raw)
|
|
return {width, height};
|
|
|
|
// Force aspect ratios by cropping the image.
|
|
const float current_aspect = width / height;
|
|
float expected_aspect;
|
|
switch (aspect_mode)
|
|
{
|
|
default:
|
|
case AspectMode::Auto:
|
|
expected_aspect = g_widescreen->IsGameWidescreen() ? (16.0f / 9.0f) : (4.0f / 3.0f);
|
|
break;
|
|
case AspectMode::ForceWide:
|
|
expected_aspect = 16.0f / 9.0f;
|
|
break;
|
|
case AspectMode::ForceStandard:
|
|
expected_aspect = 4.0f / 3.0f;
|
|
break;
|
|
// For the custom (relative) case, we want to crop from the native aspect ratio
|
|
// to the specific target one, as they likely have a small difference
|
|
case AspectMode::Custom:
|
|
// There should be no cropping needed in the custom strech case,
|
|
// as output should always exactly match the target aspect ratio
|
|
case AspectMode::CustomStretch:
|
|
expected_aspect = g_ActiveConfig.GetCustomAspectRatio();
|
|
break;
|
|
}
|
|
|
|
if (current_aspect > expected_aspect)
|
|
{
|
|
// keep height, crop width
|
|
width = height * expected_aspect;
|
|
}
|
|
else
|
|
{
|
|
// keep width, crop height
|
|
height = width / expected_aspect;
|
|
}
|
|
|
|
return {width, height};
|
|
}
|
|
|
|
void Presenter::UpdateDrawRectangle()
|
|
{
|
|
const float draw_aspect_ratio = CalculateDrawAspectRatio();
|
|
|
|
// Update aspect ratio hack values
|
|
// Won't take effect until next frame
|
|
// Don't know if there is a better place for this code so there isn't a 1 frame delay
|
|
if (g_ActiveConfig.bWidescreenHack)
|
|
{
|
|
const auto& vi = Core::System::GetInstance().GetVideoInterface();
|
|
float source_aspect_ratio = vi.GetAspectRatio();
|
|
// If the game is meant to be in widescreen (or forced to),
|
|
// scale the source aspect ratio to it.
|
|
if (g_widescreen->IsGameWidescreen())
|
|
source_aspect_ratio = SourceAspectRatioToWidescreen(source_aspect_ratio);
|
|
|
|
const float adjust = source_aspect_ratio / draw_aspect_ratio;
|
|
if (adjust > 1)
|
|
{
|
|
// Vert+
|
|
g_Config.fAspectRatioHackW = 1;
|
|
g_Config.fAspectRatioHackH = 1 / adjust;
|
|
}
|
|
else
|
|
{
|
|
// Hor+
|
|
g_Config.fAspectRatioHackW = adjust;
|
|
g_Config.fAspectRatioHackH = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Hack is disabled.
|
|
g_Config.fAspectRatioHackW = 1;
|
|
g_Config.fAspectRatioHackH = 1;
|
|
}
|
|
|
|
// The rendering window size
|
|
const float win_width = static_cast<float>(m_backbuffer_width);
|
|
const float win_height = static_cast<float>(m_backbuffer_height);
|
|
const float win_aspect_ratio = win_width / win_height;
|
|
|
|
// FIXME: this breaks at very low widget sizes
|
|
// Make ControllerInterface aware of the render window region actually being used
|
|
// to adjust mouse cursor inputs.
|
|
// This also fails to acknowledge "g_ActiveConfig.bCrop".
|
|
g_controller_interface.SetAspectRatioAdjustment(draw_aspect_ratio / win_aspect_ratio);
|
|
|
|
float draw_width = draw_aspect_ratio;
|
|
float draw_height = 1;
|
|
|
|
// Crop the picture to a standard aspect ratio. (if enabled)
|
|
auto [crop_width, crop_height] = ApplyStandardAspectCrop(draw_width, draw_height);
|
|
const float crop_aspect_ratio = crop_width / crop_height;
|
|
|
|
// scale the picture to fit the rendering window
|
|
if (win_aspect_ratio >= crop_aspect_ratio)
|
|
{
|
|
// the window is flatter than the picture
|
|
draw_width *= win_height / crop_height;
|
|
crop_width *= win_height / crop_height;
|
|
draw_height *= win_height / crop_height;
|
|
crop_height = win_height;
|
|
}
|
|
else
|
|
{
|
|
// the window is skinnier than the picture
|
|
draw_width *= win_width / crop_width;
|
|
draw_height *= win_width / crop_width;
|
|
crop_height *= win_width / crop_width;
|
|
crop_width = win_width;
|
|
}
|
|
|
|
int int_draw_width;
|
|
int int_draw_height;
|
|
|
|
if (g_ActiveConfig.aspect_mode != AspectMode::Raw || !m_xfb_entry)
|
|
{
|
|
// Find the best integer resolution: the closest aspect ratio with the least black bars.
|
|
// This should have no influence if "AspectMode::Stretch" is active.
|
|
const float updated_draw_aspect_ratio = draw_width / draw_height;
|
|
const auto int_draw_res =
|
|
FindClosestIntegerResolution(draw_width, draw_height, updated_draw_aspect_ratio);
|
|
int_draw_width = std::get<0>(int_draw_res);
|
|
int_draw_height = std::get<1>(int_draw_res);
|
|
if (!g_ActiveConfig.bCrop)
|
|
{
|
|
if (g_ActiveConfig.aspect_mode != AspectMode::Stretch)
|
|
{
|
|
TryToSnapToXFBSize(int_draw_width, int_draw_height, m_xfb_rect.GetWidth(),
|
|
m_xfb_rect.GetHeight());
|
|
}
|
|
// We can't draw something bigger than the window, it will crop
|
|
int_draw_width = std::min(int_draw_width, static_cast<int>(win_width));
|
|
int_draw_height = std::min(int_draw_height, static_cast<int>(win_height));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int_draw_width = m_xfb_rect.GetWidth();
|
|
int_draw_height = m_xfb_rect.GetHeight();
|
|
}
|
|
|
|
m_target_rectangle.left = static_cast<int>(std::round(win_width / 2.0 - int_draw_width / 2.0));
|
|
m_target_rectangle.top = static_cast<int>(std::round(win_height / 2.0 - int_draw_height / 2.0));
|
|
m_target_rectangle.right = m_target_rectangle.left + int_draw_width;
|
|
m_target_rectangle.bottom = m_target_rectangle.top + int_draw_height;
|
|
}
|
|
|
|
std::tuple<float, float> Presenter::ScaleToDisplayAspectRatio(const int width, const int height,
|
|
bool allow_stretch) const
|
|
{
|
|
// Scale either the width or height depending the content aspect ratio.
|
|
// This way we preserve as much resolution as possible when scaling.
|
|
float scaled_width = static_cast<float>(width);
|
|
float scaled_height = static_cast<float>(height);
|
|
const float draw_aspect = CalculateDrawAspectRatio(allow_stretch);
|
|
if (scaled_width / scaled_height >= draw_aspect)
|
|
scaled_height = scaled_width / draw_aspect;
|
|
else
|
|
scaled_width = scaled_height * draw_aspect;
|
|
return std::make_tuple(scaled_width, scaled_height);
|
|
}
|
|
|
|
std::tuple<int, int> Presenter::CalculateOutputDimensions(int width, int height,
|
|
bool allow_stretch) const
|
|
{
|
|
// Protect against zero width and height, a minimum of 1 will do
|
|
width = std::max(width, 1);
|
|
height = std::max(height, 1);
|
|
|
|
auto [scaled_width, scaled_height] = ScaleToDisplayAspectRatio(width, height, allow_stretch);
|
|
|
|
// Apply crop if enabled.
|
|
std::tie(scaled_width, scaled_height) =
|
|
ApplyStandardAspectCrop(scaled_width, scaled_height, allow_stretch);
|
|
|
|
auto aspect_mode = g_ActiveConfig.aspect_mode;
|
|
|
|
if (!allow_stretch && aspect_mode == AspectMode::Stretch)
|
|
aspect_mode = AspectMode::Auto;
|
|
|
|
if (!g_ActiveConfig.bCrop && aspect_mode != AspectMode::Stretch)
|
|
{
|
|
// Find the closest integer resolution for the aspect ratio,
|
|
// this avoids a small black line from being drawn on one of the four edges
|
|
const float draw_aspect_ratio = CalculateDrawAspectRatio(allow_stretch);
|
|
auto [int_width, int_height] =
|
|
FindClosestIntegerResolution(scaled_width, scaled_height, draw_aspect_ratio);
|
|
if (aspect_mode != AspectMode::Raw)
|
|
{
|
|
TryToSnapToXFBSize(int_width, int_height, m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
|
|
}
|
|
width = int_width;
|
|
height = int_height;
|
|
}
|
|
else
|
|
{
|
|
width = static_cast<int>(std::ceil(scaled_width));
|
|
height = static_cast<int>(std::ceil(scaled_height));
|
|
}
|
|
|
|
return std::make_tuple(width, height);
|
|
}
|
|
|
|
void Presenter::RenderXFBToScreen(const MathUtil::Rectangle<int>& target_rc,
|
|
const AbstractTexture* source_texture,
|
|
const MathUtil::Rectangle<int>& source_rc)
|
|
{
|
|
if (g_ActiveConfig.stereo_mode == StereoMode::QuadBuffer &&
|
|
g_ActiveConfig.backend_info.bUsesExplictQuadBuffering)
|
|
{
|
|
// Quad-buffered stereo is annoying on GL.
|
|
g_gfx->SelectLeftBuffer();
|
|
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture, 0);
|
|
|
|
g_gfx->SelectRightBuffer();
|
|
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture, 1);
|
|
|
|
g_gfx->SelectMainBuffer();
|
|
}
|
|
else if (g_ActiveConfig.stereo_mode == StereoMode::SBS ||
|
|
g_ActiveConfig.stereo_mode == StereoMode::TAB)
|
|
{
|
|
const auto [left_rc, right_rc] = ConvertStereoRectangle(target_rc);
|
|
|
|
m_post_processor->BlitFromTexture(left_rc, source_rc, source_texture, 0);
|
|
m_post_processor->BlitFromTexture(right_rc, source_rc, source_texture, 1);
|
|
}
|
|
// Every other case will be treated the same (stereo or not).
|
|
// If there's multiple source layers, they should all be copied.
|
|
else
|
|
{
|
|
m_post_processor->BlitFromTexture(target_rc, source_rc, source_texture);
|
|
}
|
|
}
|
|
|
|
void Presenter::Present()
|
|
{
|
|
m_present_count++;
|
|
|
|
if (g_gfx->IsHeadless() || (!m_onscreen_ui && !m_xfb_entry))
|
|
return;
|
|
|
|
if (!g_gfx->SupportsUtilityDrawing())
|
|
{
|
|
// Video Software doesn't support drawing a UI or doing post-processing
|
|
// So just show the XFB
|
|
if (m_xfb_entry)
|
|
{
|
|
g_gfx->ShowImage(m_xfb_entry->texture.get(), m_xfb_rect);
|
|
|
|
// Update the window size based on the frame that was just rendered.
|
|
// Due to depending on guest state, we need to call this every frame.
|
|
SetSuggestedWindowSize(m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Since we use the common pipelines here and draw vertices if a batch is currently being
|
|
// built by the vertex loader, we end up trampling over its pointer, as we share the buffer
|
|
// with the loader, and it has not been unmapped yet. Force a pipeline flush to avoid this.
|
|
g_vertex_manager->Flush();
|
|
|
|
UpdateDrawRectangle();
|
|
|
|
g_gfx->BeginUtilityDrawing();
|
|
g_gfx->BindBackbuffer({{0.0f, 0.0f, 0.0f, 1.0f}});
|
|
|
|
// Render the XFB to the screen.
|
|
if (m_xfb_entry)
|
|
{
|
|
// Adjust the source rectangle instead of using an oversized viewport to render the XFB.
|
|
auto render_target_rc = GetTargetRectangle();
|
|
auto render_source_rc = m_xfb_rect;
|
|
AdjustRectanglesToFitBounds(&render_target_rc, &render_source_rc, m_backbuffer_width,
|
|
m_backbuffer_height);
|
|
RenderXFBToScreen(render_target_rc, m_xfb_entry->texture.get(), render_source_rc);
|
|
}
|
|
|
|
if (m_onscreen_ui)
|
|
{
|
|
m_onscreen_ui->Finalize();
|
|
m_onscreen_ui->DrawImGui();
|
|
}
|
|
|
|
// Present to the window system.
|
|
{
|
|
std::lock_guard<std::mutex> guard(m_swap_mutex);
|
|
g_gfx->PresentBackbuffer();
|
|
}
|
|
|
|
if (m_xfb_entry)
|
|
{
|
|
// Update the window size based on the frame that was just rendered.
|
|
// Due to depending on guest state, we need to call this every frame.
|
|
SetSuggestedWindowSize(m_xfb_rect.GetWidth(), m_xfb_rect.GetHeight());
|
|
}
|
|
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->BeginImGuiFrame(m_backbuffer_width, m_backbuffer_height);
|
|
|
|
g_gfx->EndUtilityDrawing();
|
|
}
|
|
|
|
void Presenter::SetKeyMap(const DolphinKeyMap& key_map)
|
|
{
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->SetKeyMap(key_map);
|
|
}
|
|
|
|
void Presenter::SetKey(u32 key, bool is_down, const char* chars)
|
|
{
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->SetKey(key, is_down, chars);
|
|
}
|
|
|
|
void Presenter::SetMousePos(float x, float y)
|
|
{
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->SetMousePos(x, y);
|
|
}
|
|
|
|
void Presenter::SetMousePress(u32 button_mask)
|
|
{
|
|
if (m_onscreen_ui)
|
|
m_onscreen_ui->SetMousePress(button_mask);
|
|
}
|
|
|
|
void Presenter::DoState(PointerWrap& p)
|
|
{
|
|
p.Do(m_frame_count);
|
|
p.Do(m_last_xfb_ticks);
|
|
p.Do(m_last_xfb_addr);
|
|
p.Do(m_last_xfb_width);
|
|
p.Do(m_last_xfb_stride);
|
|
p.Do(m_last_xfb_height);
|
|
|
|
// If we're loading and there is a last XFB, re-display it.
|
|
if (p.IsReadMode() && m_last_xfb_stride != 0)
|
|
{
|
|
// This technically counts as the end of the frame
|
|
AfterFrameEvent::Trigger(Core::System::GetInstance());
|
|
|
|
ImmediateSwap(m_last_xfb_addr, m_last_xfb_width, m_last_xfb_stride, m_last_xfb_height,
|
|
m_last_xfb_ticks);
|
|
}
|
|
}
|
|
|
|
} // namespace VideoCommon
|