mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-01 19:21:00 +01:00
3da0976a81
This fixes bounding box shaders failing to compile under Vulkan, due to differences between GLSL and HLSL in the return value of vector comparisons and what types these functions accept. I included all() for the sake of completeness.
1705 lines
66 KiB
C++
1705 lines
66 KiB
C++
// Copyright 2008 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include "VideoCommon/PixelShaderGen.h"
|
|
|
|
#include <cmath>
|
|
#include <cstdio>
|
|
|
|
#include "Common/Assert.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "Common/Logging/Log.h"
|
|
#include "VideoCommon/BPMemory.h"
|
|
#include "VideoCommon/BoundingBox.h"
|
|
#include "VideoCommon/DriverDetails.h"
|
|
#include "VideoCommon/LightingShaderGen.h"
|
|
#include "VideoCommon/NativeVertexFormat.h"
|
|
#include "VideoCommon/RenderState.h"
|
|
#include "VideoCommon/VertexLoaderManager.h"
|
|
#include "VideoCommon/VideoCommon.h"
|
|
#include "VideoCommon/VideoConfig.h"
|
|
#include "VideoCommon/XFMemory.h" // for texture projection mode
|
|
|
|
// TODO: Get rid of these
|
|
enum : u32
|
|
{
|
|
C_COLORMATRIX = 0, // 0
|
|
C_COLORS = 0, // 0
|
|
C_KCOLORS = C_COLORS + 4, // 4
|
|
C_ALPHA = C_KCOLORS + 4, // 8
|
|
C_TEXDIMS = C_ALPHA + 1, // 9
|
|
C_ZBIAS = C_TEXDIMS + 8, // 17
|
|
C_INDTEXSCALE = C_ZBIAS + 2, // 19
|
|
C_INDTEXMTX = C_INDTEXSCALE + 2, // 21
|
|
C_FOGCOLOR = C_INDTEXMTX + 6, // 27
|
|
C_FOGI = C_FOGCOLOR + 1, // 28
|
|
C_FOGF = C_FOGI + 1, // 29
|
|
C_ZSLOPE = C_FOGF + 2, // 31
|
|
C_EFBSCALE = C_ZSLOPE + 1, // 32
|
|
C_PENVCONST_END = C_EFBSCALE + 1
|
|
};
|
|
|
|
constexpr std::array<const char*, 32> tev_ksel_table_c{
|
|
"255,255,255", // 1 = 0x00
|
|
"223,223,223", // 7_8 = 0x01
|
|
"191,191,191", // 3_4 = 0x02
|
|
"159,159,159", // 5_8 = 0x03
|
|
"128,128,128", // 1_2 = 0x04
|
|
"96,96,96", // 3_8 = 0x05
|
|
"64,64,64", // 1_4 = 0x06
|
|
"32,32,32", // 1_8 = 0x07
|
|
"0,0,0", // INVALID = 0x08
|
|
"0,0,0", // INVALID = 0x09
|
|
"0,0,0", // INVALID = 0x0a
|
|
"0,0,0", // INVALID = 0x0b
|
|
I_KCOLORS "[0].rgb", // K0 = 0x0C
|
|
I_KCOLORS "[1].rgb", // K1 = 0x0D
|
|
I_KCOLORS "[2].rgb", // K2 = 0x0E
|
|
I_KCOLORS "[3].rgb", // K3 = 0x0F
|
|
I_KCOLORS "[0].rrr", // K0_R = 0x10
|
|
I_KCOLORS "[1].rrr", // K1_R = 0x11
|
|
I_KCOLORS "[2].rrr", // K2_R = 0x12
|
|
I_KCOLORS "[3].rrr", // K3_R = 0x13
|
|
I_KCOLORS "[0].ggg", // K0_G = 0x14
|
|
I_KCOLORS "[1].ggg", // K1_G = 0x15
|
|
I_KCOLORS "[2].ggg", // K2_G = 0x16
|
|
I_KCOLORS "[3].ggg", // K3_G = 0x17
|
|
I_KCOLORS "[0].bbb", // K0_B = 0x18
|
|
I_KCOLORS "[1].bbb", // K1_B = 0x19
|
|
I_KCOLORS "[2].bbb", // K2_B = 0x1A
|
|
I_KCOLORS "[3].bbb", // K3_B = 0x1B
|
|
I_KCOLORS "[0].aaa", // K0_A = 0x1C
|
|
I_KCOLORS "[1].aaa", // K1_A = 0x1D
|
|
I_KCOLORS "[2].aaa", // K2_A = 0x1E
|
|
I_KCOLORS "[3].aaa", // K3_A = 0x1F
|
|
};
|
|
|
|
constexpr std::array<const char*, 32> tev_ksel_table_a{
|
|
"255", // 1 = 0x00
|
|
"223", // 7_8 = 0x01
|
|
"191", // 3_4 = 0x02
|
|
"159", // 5_8 = 0x03
|
|
"128", // 1_2 = 0x04
|
|
"96", // 3_8 = 0x05
|
|
"64", // 1_4 = 0x06
|
|
"32", // 1_8 = 0x07
|
|
"0", // INVALID = 0x08
|
|
"0", // INVALID = 0x09
|
|
"0", // INVALID = 0x0a
|
|
"0", // INVALID = 0x0b
|
|
"0", // INVALID = 0x0c
|
|
"0", // INVALID = 0x0d
|
|
"0", // INVALID = 0x0e
|
|
"0", // INVALID = 0x0f
|
|
I_KCOLORS "[0].r", // K0_R = 0x10
|
|
I_KCOLORS "[1].r", // K1_R = 0x11
|
|
I_KCOLORS "[2].r", // K2_R = 0x12
|
|
I_KCOLORS "[3].r", // K3_R = 0x13
|
|
I_KCOLORS "[0].g", // K0_G = 0x14
|
|
I_KCOLORS "[1].g", // K1_G = 0x15
|
|
I_KCOLORS "[2].g", // K2_G = 0x16
|
|
I_KCOLORS "[3].g", // K3_G = 0x17
|
|
I_KCOLORS "[0].b", // K0_B = 0x18
|
|
I_KCOLORS "[1].b", // K1_B = 0x19
|
|
I_KCOLORS "[2].b", // K2_B = 0x1A
|
|
I_KCOLORS "[3].b", // K3_B = 0x1B
|
|
I_KCOLORS "[0].a", // K0_A = 0x1C
|
|
I_KCOLORS "[1].a", // K1_A = 0x1D
|
|
I_KCOLORS "[2].a", // K2_A = 0x1E
|
|
I_KCOLORS "[3].a", // K3_A = 0x1F
|
|
};
|
|
|
|
constexpr std::array<const char*, 16> tev_c_input_table{
|
|
"prev.rgb", // CPREV,
|
|
"prev.aaa", // APREV,
|
|
"c0.rgb", // C0,
|
|
"c0.aaa", // A0,
|
|
"c1.rgb", // C1,
|
|
"c1.aaa", // A1,
|
|
"c2.rgb", // C2,
|
|
"c2.aaa", // A2,
|
|
"textemp.rgb", // TEXC,
|
|
"textemp.aaa", // TEXA,
|
|
"rastemp.rgb", // RASC,
|
|
"rastemp.aaa", // RASA,
|
|
"int3(255,255,255)", // ONE
|
|
"int3(128,128,128)", // HALF
|
|
"konsttemp.rgb", // KONST
|
|
"int3(0,0,0)", // ZERO
|
|
};
|
|
|
|
constexpr std::array<const char*, 8> tev_a_input_table{
|
|
"prev.a", // APREV,
|
|
"c0.a", // A0,
|
|
"c1.a", // A1,
|
|
"c2.a", // A2,
|
|
"textemp.a", // TEXA,
|
|
"rastemp.a", // RASA,
|
|
"konsttemp.a", // KONST, (hw1 had quarter)
|
|
"0", // ZERO
|
|
};
|
|
|
|
constexpr std::array<const char*, 8> tev_ras_table{
|
|
"iround(col0 * 255.0)",
|
|
"iround(col1 * 255.0)",
|
|
"ERROR13", // 2
|
|
"ERROR14", // 3
|
|
"ERROR15", // 4
|
|
"(int4(1, 1, 1, 1) * alphabump)", // bump alpha (0..248)
|
|
"(int4(1, 1, 1, 1) * (alphabump | (alphabump >> 5)))", // normalized bump alpha (0..255)
|
|
"int4(0, 0, 0, 0)", // zero
|
|
};
|
|
|
|
constexpr std::array<const char*, 4> tev_c_output_table{
|
|
"prev.rgb",
|
|
"c0.rgb",
|
|
"c1.rgb",
|
|
"c2.rgb",
|
|
};
|
|
|
|
constexpr std::array<const char*, 4> tev_a_output_table{
|
|
"prev.a",
|
|
"c0.a",
|
|
"c1.a",
|
|
"c2.a",
|
|
};
|
|
|
|
// FIXME: Some of the video card's capabilities (BBox support, EarlyZ support, dstAlpha support)
|
|
// leak into this UID; This is really unhelpful if these UIDs ever move from one machine to
|
|
// another.
|
|
PixelShaderUid GetPixelShaderUid()
|
|
{
|
|
PixelShaderUid out;
|
|
|
|
pixel_shader_uid_data* const uid_data = out.GetUidData();
|
|
uid_data->useDstAlpha = bpmem.dstalpha.enable && bpmem.blendmode.alphaupdate &&
|
|
bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24;
|
|
|
|
uid_data->genMode_numindstages = bpmem.genMode.numindstages;
|
|
uid_data->genMode_numtevstages = bpmem.genMode.numtevstages;
|
|
uid_data->genMode_numtexgens = bpmem.genMode.numtexgens;
|
|
uid_data->bounding_box = g_ActiveConfig.bBBoxEnable && BoundingBox::IsEnabled();
|
|
uid_data->rgba6_format =
|
|
bpmem.zcontrol.pixel_format == PixelFormat::RGBA6_Z24 && !g_ActiveConfig.bForceTrueColor;
|
|
uid_data->dither = bpmem.blendmode.dither && uid_data->rgba6_format;
|
|
uid_data->uint_output = bpmem.blendmode.UseLogicOp();
|
|
|
|
u32 numStages = uid_data->genMode_numtevstages + 1;
|
|
|
|
const bool forced_early_z =
|
|
bpmem.UseEarlyDepthTest() &&
|
|
(g_ActiveConfig.bFastDepthCalc ||
|
|
bpmem.alpha_test.TestResult() == AlphaTestResult::Undetermined)
|
|
// We can't allow early_ztest for zfreeze because depth is overridden per-pixel.
|
|
// This means it's impossible for zcomploc to be emulated on a zfrozen polygon.
|
|
&& !(bpmem.zmode.testenable && bpmem.genMode.zfreeze);
|
|
const bool per_pixel_depth =
|
|
(bpmem.ztex2.op != ZTexOp::Disabled && bpmem.UseLateDepthTest()) ||
|
|
(!g_ActiveConfig.bFastDepthCalc && bpmem.zmode.testenable && !forced_early_z) ||
|
|
(bpmem.zmode.testenable && bpmem.genMode.zfreeze);
|
|
|
|
uid_data->per_pixel_depth = per_pixel_depth;
|
|
uid_data->forced_early_z = forced_early_z;
|
|
|
|
if (g_ActiveConfig.bEnablePixelLighting)
|
|
{
|
|
uid_data->numColorChans = xfmem.numChan.numColorChans;
|
|
GetLightingShaderUid(uid_data->lighting);
|
|
}
|
|
|
|
if (uid_data->genMode_numtexgens > 0)
|
|
{
|
|
for (unsigned int i = 0; i < uid_data->genMode_numtexgens; ++i)
|
|
{
|
|
// optional perspective divides
|
|
uid_data->texMtxInfo_n_projection |= static_cast<u32>(xfmem.texMtxInfo[i].projection.Value())
|
|
<< i;
|
|
}
|
|
}
|
|
|
|
// indirect texture map lookup
|
|
int nIndirectStagesUsed = 0;
|
|
for (unsigned int i = 0; i < numStages; ++i)
|
|
{
|
|
if (bpmem.tevind[i].IsActive())
|
|
nIndirectStagesUsed |= 1 << bpmem.tevind[i].bt;
|
|
}
|
|
|
|
uid_data->nIndirectStagesUsed = nIndirectStagesUsed;
|
|
for (u32 i = 0; i < uid_data->genMode_numindstages; ++i)
|
|
{
|
|
if (uid_data->nIndirectStagesUsed & (1 << i))
|
|
uid_data->SetTevindrefValues(i, bpmem.tevindref.getTexCoord(i), bpmem.tevindref.getTexMap(i));
|
|
}
|
|
|
|
for (unsigned int n = 0; n < numStages; n++)
|
|
{
|
|
uid_data->stagehash[n].tevorders_texcoord = bpmem.tevorders[n / 2].getTexCoord(n & 1);
|
|
uid_data->stagehash[n].tevind = bpmem.tevind[n].hex;
|
|
|
|
TevStageCombiner::ColorCombiner& cc = bpmem.combiners[n].colorC;
|
|
TevStageCombiner::AlphaCombiner& ac = bpmem.combiners[n].alphaC;
|
|
uid_data->stagehash[n].cc = cc.hex & 0xFFFFFF;
|
|
uid_data->stagehash[n].ac = ac.hex & 0xFFFFF0; // Storing rswap and tswap later
|
|
|
|
if (cc.a == TevColorArg::RasAlpha || cc.a == TevColorArg::RasColor ||
|
|
cc.b == TevColorArg::RasAlpha || cc.b == TevColorArg::RasColor ||
|
|
cc.c == TevColorArg::RasAlpha || cc.c == TevColorArg::RasColor ||
|
|
cc.d == TevColorArg::RasAlpha || cc.d == TevColorArg::RasColor ||
|
|
ac.a == TevAlphaArg::RasAlpha || ac.b == TevAlphaArg::RasAlpha ||
|
|
ac.c == TevAlphaArg::RasAlpha || ac.d == TevAlphaArg::RasAlpha)
|
|
{
|
|
const int i = bpmem.combiners[n].alphaC.rswap;
|
|
uid_data->stagehash[n].tevksel_swap1a = bpmem.tevksel[i * 2].swap1;
|
|
uid_data->stagehash[n].tevksel_swap2a = bpmem.tevksel[i * 2].swap2;
|
|
uid_data->stagehash[n].tevksel_swap1b = bpmem.tevksel[i * 2 + 1].swap1;
|
|
uid_data->stagehash[n].tevksel_swap2b = bpmem.tevksel[i * 2 + 1].swap2;
|
|
uid_data->stagehash[n].tevorders_colorchan = bpmem.tevorders[n / 2].getColorChan(n & 1);
|
|
}
|
|
|
|
uid_data->stagehash[n].tevorders_enable = bpmem.tevorders[n / 2].getEnable(n & 1);
|
|
if (uid_data->stagehash[n].tevorders_enable)
|
|
{
|
|
const int i = bpmem.combiners[n].alphaC.tswap;
|
|
uid_data->stagehash[n].tevksel_swap1c = bpmem.tevksel[i * 2].swap1;
|
|
uid_data->stagehash[n].tevksel_swap2c = bpmem.tevksel[i * 2].swap2;
|
|
uid_data->stagehash[n].tevksel_swap1d = bpmem.tevksel[i * 2 + 1].swap1;
|
|
uid_data->stagehash[n].tevksel_swap2d = bpmem.tevksel[i * 2 + 1].swap2;
|
|
uid_data->stagehash[n].tevorders_texmap = bpmem.tevorders[n / 2].getTexMap(n & 1);
|
|
}
|
|
|
|
if (cc.a == TevColorArg::Konst || cc.b == TevColorArg::Konst || cc.c == TevColorArg::Konst ||
|
|
cc.d == TevColorArg::Konst || ac.a == TevAlphaArg::Konst || ac.b == TevAlphaArg::Konst ||
|
|
ac.c == TevAlphaArg::Konst || ac.d == TevAlphaArg::Konst)
|
|
{
|
|
uid_data->stagehash[n].tevksel_kc = bpmem.tevksel[n / 2].getKC(n & 1);
|
|
uid_data->stagehash[n].tevksel_ka = bpmem.tevksel[n / 2].getKA(n & 1);
|
|
}
|
|
}
|
|
|
|
#define MY_STRUCT_OFFSET(str, elem) ((u32)((u64) & (str).elem - (u64) & (str)))
|
|
uid_data->num_values = (g_ActiveConfig.bEnablePixelLighting) ?
|
|
sizeof(*uid_data) :
|
|
MY_STRUCT_OFFSET(*uid_data, stagehash[numStages]);
|
|
|
|
uid_data->Pretest = bpmem.alpha_test.TestResult();
|
|
uid_data->late_ztest = bpmem.UseLateDepthTest();
|
|
|
|
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
|
|
// (in this case we need to write a depth value if depth test passes regardless of the alpha
|
|
// testing result)
|
|
if (uid_data->Pretest == AlphaTestResult::Undetermined ||
|
|
(uid_data->Pretest == AlphaTestResult::Fail && uid_data->late_ztest))
|
|
{
|
|
uid_data->alpha_test_comp0 = bpmem.alpha_test.comp0;
|
|
uid_data->alpha_test_comp1 = bpmem.alpha_test.comp1;
|
|
uid_data->alpha_test_logic = bpmem.alpha_test.logic;
|
|
|
|
// ZCOMPLOC HACK:
|
|
// The only way to emulate alpha test + early-z is to force early-z in the shader.
|
|
// As this isn't available on all drivers and as we can't emulate this feature otherwise,
|
|
// we are only able to choose which one we want to respect more.
|
|
// Tests seem to have proven that writing depth even when the alpha test fails is more
|
|
// important that a reliable alpha test, so we just force the alpha test to always succeed.
|
|
// At least this seems to be less buggy.
|
|
uid_data->alpha_test_use_zcomploc_hack =
|
|
bpmem.UseEarlyDepthTest() && bpmem.zmode.updateenable &&
|
|
!g_ActiveConfig.backend_info.bSupportsEarlyZ && !bpmem.genMode.zfreeze;
|
|
}
|
|
|
|
uid_data->zfreeze = bpmem.genMode.zfreeze;
|
|
uid_data->ztex_op = bpmem.ztex2.op;
|
|
uid_data->early_ztest = bpmem.UseEarlyDepthTest();
|
|
|
|
uid_data->fog_fsel = bpmem.fog.c_proj_fsel.fsel;
|
|
uid_data->fog_proj = bpmem.fog.c_proj_fsel.proj;
|
|
uid_data->fog_RangeBaseEnabled = bpmem.fogRange.Base.Enabled;
|
|
|
|
BlendingState state = {};
|
|
state.Generate(bpmem);
|
|
|
|
if (state.usedualsrc && state.dstalpha && g_ActiveConfig.backend_info.bSupportsFramebufferFetch &&
|
|
!g_ActiveConfig.backend_info.bSupportsDualSourceBlend)
|
|
{
|
|
uid_data->blend_enable = state.blendenable;
|
|
uid_data->blend_src_factor = state.srcfactor;
|
|
uid_data->blend_src_factor_alpha = state.srcfactoralpha;
|
|
uid_data->blend_dst_factor = state.dstfactor;
|
|
uid_data->blend_dst_factor_alpha = state.dstfactoralpha;
|
|
uid_data->blend_subtract = state.subtract;
|
|
uid_data->blend_subtract_alpha = state.subtractAlpha;
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
void ClearUnusedPixelShaderUidBits(APIType api_type, const ShaderHostConfig& host_config,
|
|
PixelShaderUid* uid)
|
|
{
|
|
pixel_shader_uid_data* const uid_data = uid->GetUidData();
|
|
|
|
// OpenGL and Vulkan convert implicitly normalized color outputs to their uint representation.
|
|
// Therefore, it is not necessary to use a uint output on these backends. We also disable the
|
|
// uint output when logic op is not supported (i.e. driver/device does not support D3D11.1).
|
|
if (api_type != APIType::D3D || !host_config.backend_logic_op)
|
|
uid_data->uint_output = 0;
|
|
|
|
// If bounding box is enabled when a UID cache is created, then later disabled, we shouldn't
|
|
// emit the bounding box portion of the shader.
|
|
uid_data->bounding_box &= host_config.bounding_box & host_config.backend_bbox;
|
|
}
|
|
|
|
void WritePixelShaderCommonHeader(ShaderCode& out, APIType api_type,
|
|
const ShaderHostConfig& host_config, bool bounding_box)
|
|
{
|
|
// dot product for integer vectors
|
|
out.Write("int idot(int3 x, int3 y)\n"
|
|
"{{\n"
|
|
"\tint3 tmp = x * y;\n"
|
|
"\treturn tmp.x + tmp.y + tmp.z;\n"
|
|
"}}\n");
|
|
|
|
out.Write("int idot(int4 x, int4 y)\n"
|
|
"{{\n"
|
|
"\tint4 tmp = x * y;\n"
|
|
"\treturn tmp.x + tmp.y + tmp.z + tmp.w;\n"
|
|
"}}\n\n");
|
|
|
|
// rounding + casting to integer at once in a single function
|
|
out.Write("int iround(float x) {{ return int (round(x)); }}\n"
|
|
"int2 iround(float2 x) {{ return int2(round(x)); }}\n"
|
|
"int3 iround(float3 x) {{ return int3(round(x)); }}\n"
|
|
"int4 iround(float4 x) {{ return int4(round(x)); }}\n\n");
|
|
|
|
// GLSL's any() and all() only accept vector types, while HLSL's also accept scalar types. We're
|
|
// adding these for convenience because while vector comparisons return a bool scalar in GLSL,
|
|
// allowing the results to be used directly in an if statement, they return a bool vector in HLSL,
|
|
// necessitating the use of any() or all() to reduce it to a scalar.
|
|
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
|
|
{
|
|
out.Write("bool any(bool b) {{ return b; }}\n"
|
|
"bool all(bool b) {{ return b; }}\n\n");
|
|
}
|
|
|
|
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
|
|
{
|
|
out.Write("SAMPLER_BINDING(0) uniform sampler2DArray samp[8];\n");
|
|
}
|
|
else // D3D
|
|
{
|
|
// Declare samplers
|
|
out.Write("SamplerState samp[8] : register(s0);\n"
|
|
"\n"
|
|
"Texture2DArray Tex[8] : register(t0);\n");
|
|
}
|
|
out.Write("\n");
|
|
|
|
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
|
|
out.Write("UBO_BINDING(std140, 1) uniform PSBlock {{\n");
|
|
else
|
|
out.Write("cbuffer PSBlock : register(b0) {{\n");
|
|
|
|
out.Write("\tint4 " I_COLORS "[4];\n"
|
|
"\tint4 " I_KCOLORS "[4];\n"
|
|
"\tint4 " I_ALPHA ";\n"
|
|
"\tfloat4 " I_TEXDIMS "[8];\n"
|
|
"\tint4 " I_ZBIAS "[2];\n"
|
|
"\tint4 " I_INDTEXSCALE "[2];\n"
|
|
"\tint4 " I_INDTEXMTX "[6];\n"
|
|
"\tint4 " I_FOGCOLOR ";\n"
|
|
"\tint4 " I_FOGI ";\n"
|
|
"\tfloat4 " I_FOGF ";\n"
|
|
"\tfloat4 " I_FOGRANGE "[3];\n"
|
|
"\tfloat4 " I_ZSLOPE ";\n"
|
|
"\tfloat2 " I_EFBSCALE ";\n"
|
|
"\tuint bpmem_genmode;\n"
|
|
"\tuint bpmem_alphaTest;\n"
|
|
"\tuint bpmem_fogParam3;\n"
|
|
"\tuint bpmem_fogRangeBase;\n"
|
|
"\tuint bpmem_dstalpha;\n"
|
|
"\tuint bpmem_ztex_op;\n"
|
|
"\tbool bpmem_late_ztest;\n"
|
|
"\tbool bpmem_rgba6_format;\n"
|
|
"\tbool bpmem_dither;\n"
|
|
"\tbool bpmem_bounding_box;\n"
|
|
"\tuint4 bpmem_pack1[16];\n" // .xy - combiners, .z - tevind
|
|
"\tuint4 bpmem_pack2[8];\n" // .x - tevorder, .y - tevksel
|
|
"\tint4 konstLookup[32];\n"
|
|
"\tbool blend_enable;\n"
|
|
"\tuint blend_src_factor;\n"
|
|
"\tuint blend_src_factor_alpha;\n"
|
|
"\tuint blend_dst_factor;\n"
|
|
"\tuint blend_dst_factor_alpha;\n"
|
|
"\tbool blend_subtract;\n"
|
|
"\tbool blend_subtract_alpha;\n"
|
|
"}};\n\n");
|
|
out.Write("#define bpmem_combiners(i) (bpmem_pack1[(i)].xy)\n"
|
|
"#define bpmem_tevind(i) (bpmem_pack1[(i)].z)\n"
|
|
"#define bpmem_iref(i) (bpmem_pack1[(i)].w)\n"
|
|
"#define bpmem_tevorder(i) (bpmem_pack2[(i)].x)\n"
|
|
"#define bpmem_tevksel(i) (bpmem_pack2[(i)].y)\n\n");
|
|
|
|
if (host_config.per_pixel_lighting)
|
|
{
|
|
out.Write("{}", s_lighting_struct);
|
|
|
|
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
|
|
out.Write("UBO_BINDING(std140, 2) uniform VSBlock {{\n");
|
|
else
|
|
out.Write("cbuffer VSBlock : register(b1) {{\n");
|
|
|
|
out.Write("{}", s_shader_uniforms);
|
|
out.Write("}};\n");
|
|
}
|
|
|
|
if (bounding_box)
|
|
{
|
|
if (api_type == APIType::D3D)
|
|
{
|
|
out.Write("globallycoherent RWBuffer<int> bbox_data : register(u2);\n"
|
|
"#define atomicMin InterlockedMin\n"
|
|
"#define atomicMax InterlockedMax");
|
|
}
|
|
else
|
|
{
|
|
out.Write("SSBO_BINDING(0) buffer BBox {{\n");
|
|
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_SSBO_FIELD_ATOMICS))
|
|
{
|
|
// AMD drivers on Windows seemingly ignore atomic writes to fields or array elements of an
|
|
// SSBO other than the first one, but using an int4 seems to work fine
|
|
out.Write(" int4 bbox_data;\n");
|
|
}
|
|
else
|
|
{
|
|
// The Metal shader compiler fails to compile the atomic instructions when operating on
|
|
// individual components of a vector
|
|
out.Write(" int bbox_data[4];\n");
|
|
}
|
|
|
|
out.Write("}};");
|
|
}
|
|
|
|
out.Write(R"(
|
|
#define bbox_left bbox_data[0]
|
|
#define bbox_right bbox_data[1]
|
|
#define bbox_top bbox_data[2]
|
|
#define bbox_bottom bbox_data[3]
|
|
|
|
void UpdateBoundingBoxBuffer(int2 min_pos, int2 max_pos) {{
|
|
if (bbox_left > min_pos.x)
|
|
atomicMin(bbox_left, min_pos.x);
|
|
if (bbox_right < max_pos.x)
|
|
atomicMax(bbox_right, max_pos.x);
|
|
if (bbox_top > min_pos.y)
|
|
atomicMin(bbox_top, min_pos.y);
|
|
if (bbox_bottom < max_pos.y)
|
|
atomicMax(bbox_bottom, max_pos.y);
|
|
}}
|
|
|
|
void UpdateBoundingBox(float2 rawpos) {{
|
|
// We only want to include coordinates for pixels aligned with the native resolution pixel centers.
|
|
// This makes bounding box sizes more accurate (though not perfect) at higher resolutions,
|
|
// avoiding EFB copy buffer overflow in affected games.
|
|
//
|
|
// For a more detailed explanation, see https://dolp.in/pr9801
|
|
int2 int_efb_scale = iround(1 / {efb_scale}.xy);
|
|
if (any(int2(rawpos) % int_efb_scale != int_efb_scale >> 1)) // divide by two
|
|
return;
|
|
|
|
// The rightmost shaded pixel is not included in the right bounding box register,
|
|
// such that width = right - left + 1. This has been verified on hardware.
|
|
int2 pos = int2(rawpos * {efb_scale}.xy);
|
|
|
|
#ifdef API_OPENGL
|
|
// We need to invert the Y coordinate due to OpenGL's lower-left origin
|
|
pos.y = {efb_height} - pos.y - 1;
|
|
#endif
|
|
|
|
// The GC/Wii GPU rasterizes in 2x2 pixel groups, so bounding box values will be rounded to the
|
|
// extents of these groups, rather than the exact pixel.
|
|
int2 pos_tl = pos & ~1; // round down to even
|
|
int2 pos_br = pos | 1; // round up to odd
|
|
|
|
#ifdef SUPPORTS_SUBGROUP_REDUCTION
|
|
if (CAN_USE_SUBGROUP_REDUCTION) {{
|
|
int2 min_pos = IS_HELPER_INVOCATION ? int2(2147483647, 2147483647) : pos_tl;
|
|
int2 max_pos = IS_HELPER_INVOCATION ? int2(-2147483648, -2147483648) : pos_br;
|
|
SUBGROUP_MIN(min_pos);
|
|
SUBGROUP_MAX(max_pos);
|
|
if (IS_FIRST_ACTIVE_INVOCATION)
|
|
UpdateBoundingBoxBuffer(min_pos, max_pos);
|
|
}} else {{
|
|
UpdateBoundingBoxBuffer(pos_tl, pos_br);
|
|
}}
|
|
#else
|
|
UpdateBoundingBoxBuffer(pos_tl, pos_br);
|
|
#endif
|
|
}}
|
|
|
|
)",
|
|
fmt::arg("efb_height", EFB_HEIGHT), fmt::arg("efb_scale", I_EFBSCALE));
|
|
}
|
|
}
|
|
|
|
static void WriteStage(ShaderCode& out, const pixel_shader_uid_data* uid_data, int n,
|
|
APIType api_type, bool stereo);
|
|
static void WriteTevRegular(ShaderCode& out, std::string_view components, TevBias bias, TevOp op,
|
|
bool clamp, TevScale scale, bool alpha);
|
|
static void SampleTexture(ShaderCode& out, std::string_view texcoords, std::string_view texswap,
|
|
int texmap, bool stereo, APIType api_type);
|
|
static void WriteAlphaTest(ShaderCode& out, const pixel_shader_uid_data* uid_data, APIType api_type,
|
|
bool per_pixel_depth, bool use_dual_source);
|
|
static void WriteFog(ShaderCode& out, const pixel_shader_uid_data* uid_data);
|
|
static void WriteColor(ShaderCode& out, APIType api_type, const pixel_shader_uid_data* uid_data,
|
|
bool use_dual_source);
|
|
static void WriteBlend(ShaderCode& out, const pixel_shader_uid_data* uid_data);
|
|
|
|
ShaderCode GeneratePixelShaderCode(APIType api_type, const ShaderHostConfig& host_config,
|
|
const pixel_shader_uid_data* uid_data)
|
|
{
|
|
ShaderCode out;
|
|
|
|
const bool per_pixel_lighting = g_ActiveConfig.bEnablePixelLighting;
|
|
const bool msaa = host_config.msaa;
|
|
const bool ssaa = host_config.ssaa;
|
|
const bool stereo = host_config.stereo;
|
|
const u32 numStages = uid_data->genMode_numtevstages + 1;
|
|
|
|
out.Write("// Pixel Shader for TEV stages\n");
|
|
out.Write("// {} TEV stages, {} texgens, {} IND stages\n", numStages,
|
|
uid_data->genMode_numtexgens, uid_data->genMode_numindstages);
|
|
|
|
// Stuff that is shared between ubershaders and pixelgen.
|
|
WritePixelShaderCommonHeader(out, api_type, host_config, uid_data->bounding_box);
|
|
|
|
if (uid_data->forced_early_z && g_ActiveConfig.backend_info.bSupportsEarlyZ)
|
|
{
|
|
// Zcomploc (aka early_ztest) is a way to control whether depth test is done before
|
|
// or after texturing and alpha test. PC graphics APIs used to provide no way to emulate
|
|
// this feature properly until 2012: Depth tests were always done after alpha testing.
|
|
// Most importantly, it was not possible to write to the depth buffer without also writing
|
|
// a color value (unless color writing was disabled altogether).
|
|
|
|
// OpenGL 4.2 actually provides two extensions which can force an early z test:
|
|
// * ARB_image_load_store has 'layout(early_fragment_tests)' which forces the driver to do z
|
|
// and stencil tests early.
|
|
// * ARB_conservative_depth has 'layout(depth_unchanged) which signals to the driver that it
|
|
// can make optimisations
|
|
// which assume the pixel shader won't update the depth buffer.
|
|
|
|
// early_fragment_tests is the best option, as it requires the driver to do early-z and defines
|
|
// early-z exactly as
|
|
// we expect, with discard causing the shader to exit with only the depth buffer updated.
|
|
|
|
// Conservative depth's 'depth_unchanged' only hints to the driver that an early-z optimisation
|
|
// can be made and
|
|
// doesn't define what will happen if we discard the fragment. But the way modern graphics
|
|
// hardware is implemented
|
|
// means it is not unreasonable to expect the same behaviour as early_fragment_tests.
|
|
// We can also assume that if a driver has gone out of its way to support conservative depth and
|
|
// not image_load_store
|
|
// as required by OpenGL 4.2 that it will be doing the optimisation.
|
|
// If the driver doesn't actually do an early z optimisation, ZCompLoc will be broken and depth
|
|
// will only be written
|
|
// if the alpha test passes.
|
|
|
|
// We support Conservative as a fallback, because many drivers based on Mesa haven't implemented
|
|
// all of the
|
|
// ARB_image_load_store extension yet.
|
|
|
|
// D3D11 also has a way to force the driver to enable early-z, so we're fine here.
|
|
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
|
|
{
|
|
// This is a #define which signals whatever early-z method the driver supports.
|
|
out.Write("FORCE_EARLY_Z; \n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("[earlydepthstencil]\n");
|
|
}
|
|
}
|
|
|
|
// Only use dual-source blending when required on drivers that don't support it very well.
|
|
const bool use_dual_source =
|
|
host_config.backend_dual_source_blend &&
|
|
(!DriverDetails::HasBug(DriverDetails::BUG_BROKEN_DUAL_SOURCE_BLENDING) ||
|
|
uid_data->useDstAlpha);
|
|
const bool use_shader_blend =
|
|
!use_dual_source && (uid_data->useDstAlpha && host_config.backend_shader_framebuffer_fetch);
|
|
|
|
if (api_type == APIType::OpenGL || api_type == APIType::Vulkan)
|
|
{
|
|
if (use_dual_source)
|
|
{
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_FRAGMENT_SHADER_INDEX_DECORATION))
|
|
{
|
|
out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n"
|
|
"FRAGMENT_OUTPUT_LOCATION(1) out vec4 ocol1;\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0) out vec4 ocol0;\n"
|
|
"FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 1) out vec4 ocol1;\n");
|
|
}
|
|
}
|
|
else if (use_shader_blend)
|
|
{
|
|
// QComm's Adreno driver doesn't seem to like using the framebuffer_fetch value as an
|
|
// intermediate value with multiple reads & modifications, so pull out the "real" output value
|
|
// and use a temporary for calculations, then set the output value once at the end of the
|
|
// shader
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_FRAGMENT_SHADER_INDEX_DECORATION))
|
|
{
|
|
out.Write("FRAGMENT_OUTPUT_LOCATION(0) FRAGMENT_INOUT vec4 real_ocol0;\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("FRAGMENT_OUTPUT_LOCATION_INDEXED(0, 0) FRAGMENT_INOUT vec4 real_ocol0;\n");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
out.Write("FRAGMENT_OUTPUT_LOCATION(0) out vec4 ocol0;\n");
|
|
}
|
|
|
|
if (uid_data->per_pixel_depth)
|
|
out.Write("#define depth gl_FragDepth\n");
|
|
|
|
if (host_config.backend_geometry_shaders)
|
|
{
|
|
out.Write("VARYING_LOCATION(0) in VertexData {{\n");
|
|
GenerateVSOutputMembers(out, api_type, uid_data->genMode_numtexgens, host_config,
|
|
GetInterpolationQualifier(msaa, ssaa, true, true));
|
|
|
|
if (stereo)
|
|
out.Write("\tflat int layer;\n");
|
|
|
|
out.Write("}};\n");
|
|
}
|
|
else
|
|
{
|
|
// Let's set up attributes
|
|
u32 counter = 0;
|
|
out.Write("VARYING_LOCATION({}) {} in float4 colors_0;\n", counter++,
|
|
GetInterpolationQualifier(msaa, ssaa));
|
|
out.Write("VARYING_LOCATION({}) {} in float4 colors_1;\n", counter++,
|
|
GetInterpolationQualifier(msaa, ssaa));
|
|
for (u32 i = 0; i < uid_data->genMode_numtexgens; ++i)
|
|
{
|
|
out.Write("VARYING_LOCATION({}) {} in float3 tex{};\n", counter++,
|
|
GetInterpolationQualifier(msaa, ssaa), i);
|
|
}
|
|
if (!host_config.fast_depth_calc)
|
|
{
|
|
out.Write("VARYING_LOCATION({}) {} in float4 clipPos;\n", counter++,
|
|
GetInterpolationQualifier(msaa, ssaa));
|
|
}
|
|
if (per_pixel_lighting)
|
|
{
|
|
out.Write("VARYING_LOCATION({}) {} in float3 Normal;\n", counter++,
|
|
GetInterpolationQualifier(msaa, ssaa));
|
|
out.Write("VARYING_LOCATION({}) {} in float3 WorldPos;\n", counter++,
|
|
GetInterpolationQualifier(msaa, ssaa));
|
|
}
|
|
}
|
|
|
|
out.Write("void main()\n{{\n");
|
|
out.Write("\tfloat4 rawpos = gl_FragCoord;\n");
|
|
if (use_shader_blend)
|
|
{
|
|
// Store off a copy of the initial fb value for blending
|
|
out.Write("\tfloat4 initial_ocol0 = FB_FETCH_VALUE;\n"
|
|
"\tfloat4 ocol0;\n"
|
|
"\tfloat4 ocol1;\n");
|
|
}
|
|
}
|
|
else // D3D
|
|
{
|
|
out.Write("void main(\n");
|
|
if (uid_data->uint_output)
|
|
{
|
|
out.Write(" out uint4 ocol0 : SV_Target,\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write(" out float4 ocol0 : SV_Target0,\n"
|
|
" out float4 ocol1 : SV_Target1,\n");
|
|
}
|
|
out.Write("{}"
|
|
" in float4 rawpos : SV_Position,\n",
|
|
uid_data->per_pixel_depth ? " out float depth : SV_Depth,\n" : "");
|
|
|
|
out.Write(" in {} float4 colors_0 : COLOR0,\n", GetInterpolationQualifier(msaa, ssaa));
|
|
out.Write(" in {} float4 colors_1 : COLOR1\n", GetInterpolationQualifier(msaa, ssaa));
|
|
|
|
// compute window position if needed because binding semantic WPOS is not widely supported
|
|
for (u32 i = 0; i < uid_data->genMode_numtexgens; ++i)
|
|
{
|
|
out.Write(",\n in {} float3 tex{} : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa), i,
|
|
i);
|
|
}
|
|
if (!host_config.fast_depth_calc)
|
|
{
|
|
out.Write(",\n in {} float4 clipPos : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa),
|
|
uid_data->genMode_numtexgens);
|
|
}
|
|
if (per_pixel_lighting)
|
|
{
|
|
out.Write(",\n in {} float3 Normal : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa),
|
|
uid_data->genMode_numtexgens + 1);
|
|
out.Write(",\n in {} float3 WorldPos : TEXCOORD{}", GetInterpolationQualifier(msaa, ssaa),
|
|
uid_data->genMode_numtexgens + 2);
|
|
}
|
|
if (host_config.backend_geometry_shaders)
|
|
{
|
|
out.Write(",\n in float clipDist0 : SV_ClipDistance0\n"
|
|
",\n in float clipDist1 : SV_ClipDistance1\n");
|
|
}
|
|
if (stereo)
|
|
out.Write(",\n in uint layer : SV_RenderTargetArrayIndex\n");
|
|
out.Write(" ) {{\n");
|
|
}
|
|
|
|
out.Write("\tint4 c0 = " I_COLORS "[1], c1 = " I_COLORS "[2], c2 = " I_COLORS
|
|
"[3], prev = " I_COLORS "[0];\n"
|
|
"\tint4 rastemp = int4(0, 0, 0, 0), textemp = int4(0, 0, 0, 0), konsttemp = int4(0, 0, "
|
|
"0, 0);\n"
|
|
"\tint3 comp16 = int3(1, 256, 0), comp24 = int3(1, 256, 256*256);\n"
|
|
"\tint alphabump=0;\n"
|
|
"\tint3 tevcoord=int3(0, 0, 0);\n"
|
|
"\tint2 wrappedcoord=int2(0,0), tempcoord=int2(0,0);\n"
|
|
"\tint4 "
|
|
"tevin_a=int4(0,0,0,0),tevin_b=int4(0,0,0,0),tevin_c=int4(0,0,0,0),tevin_d=int4(0,0,0,"
|
|
"0);\n\n"); // tev combiner inputs
|
|
|
|
// On GLSL, input variables must not be assigned to.
|
|
// This is why we declare these variables locally instead.
|
|
out.Write("\tfloat4 col0 = colors_0;\n"
|
|
"\tfloat4 col1 = colors_1;\n");
|
|
|
|
if (per_pixel_lighting)
|
|
{
|
|
out.Write("\tfloat3 _norm0 = normalize(Normal.xyz);\n\n"
|
|
"\tfloat3 pos = WorldPos;\n");
|
|
|
|
out.Write("\tint4 lacc;\n"
|
|
"\tfloat3 ldir, h, cosAttn, distAttn;\n"
|
|
"\tfloat dist, dist2, attn;\n");
|
|
|
|
// TODO: Our current constant usage code isn't able to handle more than one buffer.
|
|
// So we can't mark the VS constant as used here. But keep them here as reference.
|
|
// out.SetConstantsUsed(C_PLIGHT_COLORS, C_PLIGHT_COLORS+7); // TODO: Can be optimized further
|
|
// out.SetConstantsUsed(C_PLIGHTS, C_PLIGHTS+31); // TODO: Can be optimized further
|
|
// out.SetConstantsUsed(C_PMATERIALS, C_PMATERIALS+3);
|
|
GenerateLightingShaderCode(out, uid_data->lighting, "colors_", "col");
|
|
if (uid_data->numColorChans == 0)
|
|
out.Write("col0 = float4(0.0, 0.0, 0.0, 0.0);\n");
|
|
if (uid_data->numColorChans <= 1)
|
|
out.Write("col1 = float4(0.0, 0.0, 0.0, 0.0);\n");
|
|
}
|
|
|
|
if (uid_data->genMode_numtexgens == 0)
|
|
{
|
|
// TODO: This is a hack to ensure that shaders still compile when setting out of bounds tex
|
|
// coord indices to 0. Ideally, it shouldn't exist at all, but the exact behavior hasn't been
|
|
// tested.
|
|
out.Write("\tint2 fixpoint_uv0 = int2(0, 0);\n\n");
|
|
}
|
|
else
|
|
{
|
|
out.SetConstantsUsed(C_TEXDIMS, C_TEXDIMS + uid_data->genMode_numtexgens - 1);
|
|
for (u32 i = 0; i < uid_data->genMode_numtexgens; ++i)
|
|
{
|
|
out.Write("\tint2 fixpoint_uv{} = int2(", i);
|
|
out.Write("(tex{}.z == 0.0 ? tex{}.xy : tex{}.xy / tex{}.z)", i, i, i, i);
|
|
out.Write(" * " I_TEXDIMS "[{}].zw);\n", i);
|
|
// TODO: S24 overflows here?
|
|
}
|
|
}
|
|
|
|
for (u32 i = 0; i < uid_data->genMode_numindstages; ++i)
|
|
{
|
|
if ((uid_data->nIndirectStagesUsed & (1U << i)) != 0)
|
|
{
|
|
u32 texcoord = uid_data->GetTevindirefCoord(i);
|
|
const u32 texmap = uid_data->GetTevindirefMap(i);
|
|
|
|
// Quirk: when the tex coord is not less than the number of tex gens (i.e. the tex coord does
|
|
// not exist), then tex coord 0 is used (though sometimes glitchy effects happen on console).
|
|
// This affects the Mario portrait in Luigi's Mansion, where the developers forgot to set
|
|
// the number of tex gens to 2 (bug 11462).
|
|
if (texcoord >= uid_data->genMode_numtexgens)
|
|
texcoord = 0;
|
|
|
|
out.SetConstantsUsed(C_INDTEXSCALE + i / 2, C_INDTEXSCALE + i / 2);
|
|
out.Write("\ttempcoord = fixpoint_uv{} >> " I_INDTEXSCALE "[{}].{};\n", texcoord, i / 2,
|
|
(i & 1) ? "zw" : "xy");
|
|
|
|
out.Write("\tint3 iindtex{} = ", i);
|
|
SampleTexture(out, "float2(tempcoord)", "abg", texmap, stereo, api_type);
|
|
}
|
|
}
|
|
|
|
for (u32 i = 0; i < numStages; i++)
|
|
{
|
|
// Build the equation for this stage
|
|
WriteStage(out, uid_data, i, api_type, stereo);
|
|
}
|
|
|
|
{
|
|
// The results of the last texenv stage are put onto the screen,
|
|
// regardless of the used destination register
|
|
TevStageCombiner::ColorCombiner last_cc;
|
|
TevStageCombiner::AlphaCombiner last_ac;
|
|
last_cc.hex = uid_data->stagehash[uid_data->genMode_numtevstages].cc;
|
|
last_ac.hex = uid_data->stagehash[uid_data->genMode_numtevstages].ac;
|
|
if (last_cc.dest != TevOutput::Prev)
|
|
{
|
|
out.Write("\tprev.rgb = {};\n", tev_c_output_table[u32(last_cc.dest.Value())]);
|
|
}
|
|
if (last_ac.dest != TevOutput::Prev)
|
|
{
|
|
out.Write("\tprev.a = {};\n", tev_a_output_table[u32(last_ac.dest.Value())]);
|
|
}
|
|
}
|
|
out.Write("\tprev = prev & 255;\n");
|
|
|
|
// NOTE: Fragment may not be discarded if alpha test always fails and early depth test is enabled
|
|
// (in this case we need to write a depth value if depth test passes regardless of the alpha
|
|
// testing result)
|
|
if (uid_data->Pretest == AlphaTestResult::Undetermined ||
|
|
(uid_data->Pretest == AlphaTestResult::Fail && uid_data->late_ztest))
|
|
{
|
|
WriteAlphaTest(out, uid_data, api_type, uid_data->per_pixel_depth,
|
|
use_dual_source || use_shader_blend);
|
|
}
|
|
|
|
if (uid_data->zfreeze)
|
|
{
|
|
out.SetConstantsUsed(C_ZSLOPE, C_ZSLOPE);
|
|
out.SetConstantsUsed(C_EFBSCALE, C_EFBSCALE);
|
|
|
|
out.Write("\tfloat2 screenpos = rawpos.xy * " I_EFBSCALE ".xy;\n");
|
|
|
|
// Opengl has reversed vertical screenspace coordinates
|
|
if (api_type == APIType::OpenGL)
|
|
out.Write("\tscreenpos.y = {}.0 - screenpos.y;\n", EFB_HEIGHT);
|
|
|
|
out.Write("\tint zCoord = int(" I_ZSLOPE ".z + " I_ZSLOPE ".x * screenpos.x + " I_ZSLOPE
|
|
".y * screenpos.y);\n");
|
|
}
|
|
else if (!host_config.fast_depth_calc)
|
|
{
|
|
// FastDepth means to trust the depth generated in perspective division.
|
|
// It should be correct, but it seems not to be as accurate as required. TODO: Find out why!
|
|
// For disabled FastDepth we just calculate the depth value again.
|
|
// The performance impact of this additional calculation doesn't matter, but it prevents
|
|
// the host GPU driver from performing any early depth test optimizations.
|
|
out.SetConstantsUsed(C_ZBIAS + 1, C_ZBIAS + 1);
|
|
// the screen space depth value = far z + (clip z / clip w) * z range
|
|
out.Write("\tint zCoord = " I_ZBIAS "[1].x + int((clipPos.z / clipPos.w) * float(" I_ZBIAS
|
|
"[1].y));\n");
|
|
}
|
|
else
|
|
{
|
|
if (!host_config.backend_reversed_depth_range)
|
|
out.Write("\tint zCoord = int((1.0 - rawpos.z) * 16777216.0);\n");
|
|
else
|
|
out.Write("\tint zCoord = int(rawpos.z * 16777216.0);\n");
|
|
}
|
|
out.Write("\tzCoord = clamp(zCoord, 0, 0xFFFFFF);\n");
|
|
|
|
// depth texture can safely be ignored if the result won't be written to the depth buffer
|
|
// (early_ztest) and isn't used for fog either
|
|
const bool skip_ztexture = !uid_data->per_pixel_depth && uid_data->fog_fsel == FogType::Off;
|
|
|
|
// Note: z-textures are not written to depth buffer if early depth test is used
|
|
if (uid_data->per_pixel_depth && uid_data->early_ztest)
|
|
{
|
|
if (!host_config.backend_reversed_depth_range)
|
|
out.Write("\tdepth = 1.0 - float(zCoord) / 16777216.0;\n");
|
|
else
|
|
out.Write("\tdepth = float(zCoord) / 16777216.0;\n");
|
|
}
|
|
|
|
// Note: depth texture output is only written to depth buffer if late depth test is used
|
|
// theoretical final depth value is used for fog calculation, though, so we have to emulate
|
|
// ztextures anyway
|
|
if (uid_data->ztex_op != ZTexOp::Disabled && !skip_ztexture)
|
|
{
|
|
// use the texture input of the last texture stage (textemp), hopefully this has been read and
|
|
// is in correct format...
|
|
out.SetConstantsUsed(C_ZBIAS, C_ZBIAS + 1);
|
|
out.Write("\tzCoord = idot(" I_ZBIAS "[0].xyzw, textemp.xyzw) + " I_ZBIAS "[1].w {};\n",
|
|
(uid_data->ztex_op == ZTexOp::Add) ? "+ zCoord" : "");
|
|
out.Write("\tzCoord = zCoord & 0xFFFFFF;\n");
|
|
}
|
|
|
|
if (uid_data->per_pixel_depth && uid_data->late_ztest)
|
|
{
|
|
if (!host_config.backend_reversed_depth_range)
|
|
out.Write("\tdepth = 1.0 - float(zCoord) / 16777216.0;\n");
|
|
else
|
|
out.Write("\tdepth = float(zCoord) / 16777216.0;\n");
|
|
}
|
|
|
|
// No dithering for RGB8 mode
|
|
if (uid_data->dither)
|
|
{
|
|
// Flipper uses a standard 2x2 Bayer Matrix for 6 bit dithering
|
|
// Here the matrix is encoded into the two factor constants
|
|
out.Write("\tint2 dither = int2(rawpos.xy) & 1;\n");
|
|
out.Write("\tprev.rgb = (prev.rgb - (prev.rgb >> 6)) + abs(dither.y * 3 - dither.x * 2);\n");
|
|
}
|
|
|
|
WriteFog(out, uid_data);
|
|
|
|
// Write the color and alpha values to the framebuffer
|
|
// If using shader blend, we still use the separate alpha
|
|
WriteColor(out, api_type, uid_data, use_dual_source || use_shader_blend);
|
|
|
|
if (use_shader_blend)
|
|
WriteBlend(out, uid_data);
|
|
|
|
if (uid_data->bounding_box)
|
|
out.Write("\tUpdateBoundingBox(rawpos.xy);\n");
|
|
|
|
out.Write("}}\n");
|
|
|
|
return out;
|
|
}
|
|
|
|
static void WriteStage(ShaderCode& out, const pixel_shader_uid_data* uid_data, int n,
|
|
APIType api_type, bool stereo)
|
|
{
|
|
const auto& stage = uid_data->stagehash[n];
|
|
out.Write("\n\t// TEV stage {}\n", n);
|
|
|
|
// Quirk: when the tex coord is not less than the number of tex gens (i.e. the tex coord does not
|
|
// exist), then tex coord 0 is used (though sometimes glitchy effects happen on console).
|
|
u32 texcoord = stage.tevorders_texcoord;
|
|
const bool has_tex_coord = texcoord < uid_data->genMode_numtexgens;
|
|
if (!has_tex_coord)
|
|
texcoord = 0;
|
|
|
|
{
|
|
const TevStageIndirect tevind{.hex = stage.tevind};
|
|
out.Write("\t// indirect op\n");
|
|
|
|
// Quirk: Referencing a stage above the number of ind stages is undefined behavior,
|
|
// and on console produces a noise pattern (details unknown).
|
|
// Instead, just skip applying the indirect operation, which is close enough.
|
|
// We need to do *something*, as there won't be an iindtex variable otherwise.
|
|
// Viewtiful Joe hits this case (bug 12525).
|
|
// Wrapping and add to previous still apply in this case (and when the stage is disabled).
|
|
const bool has_ind_stage = tevind.bt < uid_data->genMode_numindstages;
|
|
|
|
// Perform the indirect op on the incoming regular coordinates
|
|
// using iindtex{} as the offset coords
|
|
if (has_ind_stage && tevind.bs != IndTexBumpAlpha::Off)
|
|
{
|
|
static constexpr std::array<const char*, 4> tev_ind_alpha_sel{
|
|
"",
|
|
"x",
|
|
"y",
|
|
"z",
|
|
};
|
|
|
|
// 0b11111000, 0b11100000, 0b11110000, 0b11111000
|
|
static constexpr std::array<const char*, 4> tev_ind_alpha_mask{
|
|
"248",
|
|
"224",
|
|
"240",
|
|
"248",
|
|
};
|
|
|
|
out.Write("alphabump = iindtex{}.{} & {};\n", tevind.bt.Value(),
|
|
tev_ind_alpha_sel[u32(tevind.bs.Value())],
|
|
tev_ind_alpha_mask[u32(tevind.fmt.Value())]);
|
|
}
|
|
else
|
|
{
|
|
// TODO: Should we reset alphabump to 0 here?
|
|
}
|
|
|
|
if (has_ind_stage && tevind.matrix_index != IndMtxIndex::Off)
|
|
{
|
|
// format
|
|
static constexpr std::array<const char*, 4> tev_ind_fmt_mask{
|
|
"255",
|
|
"31",
|
|
"15",
|
|
"7",
|
|
};
|
|
out.Write("\tint3 iindtevcrd{} = iindtex{} & {};\n", n, tevind.bt.Value(),
|
|
tev_ind_fmt_mask[u32(tevind.fmt.Value())]);
|
|
|
|
// bias - TODO: Check if this needs to be this complicated...
|
|
// indexed by bias
|
|
static constexpr std::array<const char*, 8> tev_ind_bias_field{
|
|
"", "x", "y", "xy", "z", "xz", "yz", "xyz",
|
|
};
|
|
|
|
// indexed by fmt
|
|
static constexpr std::array<const char*, 4> tev_ind_bias_add{
|
|
"-128",
|
|
"1",
|
|
"1",
|
|
"1",
|
|
};
|
|
|
|
if (tevind.bias == IndTexBias::S || tevind.bias == IndTexBias::T ||
|
|
tevind.bias == IndTexBias::U)
|
|
{
|
|
out.Write("\tiindtevcrd{}.{} += int({});\n", n,
|
|
tev_ind_bias_field[u32(tevind.bias.Value())],
|
|
tev_ind_bias_add[u32(tevind.fmt.Value())]);
|
|
}
|
|
else if (tevind.bias == IndTexBias::ST || tevind.bias == IndTexBias::SU ||
|
|
tevind.bias == IndTexBias::TU_)
|
|
{
|
|
out.Write("\tiindtevcrd{0}.{1} += int2({2}, {2});\n", n,
|
|
tev_ind_bias_field[u32(tevind.bias.Value())],
|
|
tev_ind_bias_add[u32(tevind.fmt.Value())]);
|
|
}
|
|
else if (tevind.bias == IndTexBias::STU)
|
|
{
|
|
out.Write("\tiindtevcrd{0}.{1} += int3({2}, {2}, {2});\n", n,
|
|
tev_ind_bias_field[u32(tevind.bias.Value())],
|
|
tev_ind_bias_add[u32(tevind.fmt.Value())]);
|
|
}
|
|
|
|
// Multiplied by 2 because each matrix has two rows.
|
|
// Note also that the 4th column of the matrix contains the scale factor.
|
|
const u32 mtxidx = 2 * (static_cast<u32>(tevind.matrix_index.Value()) - 1);
|
|
|
|
// multiply by offset matrix and scale - calculations are likely to overflow badly,
|
|
// yet it works out since we only care about the lower 23 bits (+1 sign bit) of the result
|
|
if (tevind.matrix_id == IndMtxId::Indirect)
|
|
{
|
|
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
|
|
|
|
out.Write("\tint2 indtevtrans{} = int2(idot(" I_INDTEXMTX
|
|
"[{}].xyz, iindtevcrd{}), idot(" I_INDTEXMTX "[{}].xyz, iindtevcrd{})) >> 3;\n",
|
|
n, mtxidx, n, mtxidx + 1, n);
|
|
|
|
// TODO: should use a shader uid branch for this for better performance
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_BITWISE_OP_NEGATION))
|
|
{
|
|
out.Write("\tint indtexmtx_w_inverse_{} = -" I_INDTEXMTX "[{}].w;\n", n, mtxidx);
|
|
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
|
|
mtxidx, n, mtxidx);
|
|
out.Write("\telse indtevtrans{} <<= indtexmtx_w_inverse_{};\n", n, n);
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
|
|
mtxidx, n, mtxidx);
|
|
out.Write("\telse indtevtrans{} <<= (-" I_INDTEXMTX "[{}].w);\n", n, mtxidx);
|
|
}
|
|
}
|
|
else if (tevind.matrix_id == IndMtxId::S)
|
|
{
|
|
ASSERT(has_tex_coord);
|
|
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
|
|
|
|
out.Write("\tint2 indtevtrans{} = int2(fixpoint_uv{} * iindtevcrd{}.xx) >> 8;\n", n,
|
|
texcoord, n);
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_BITWISE_OP_NEGATION))
|
|
{
|
|
out.Write("\tint indtexmtx_w_inverse_{} = -" I_INDTEXMTX "[{}].w;\n", n, mtxidx);
|
|
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
|
|
mtxidx, n, mtxidx);
|
|
out.Write("\telse indtevtrans{} <<= (indtexmtx_w_inverse_{});\n", n, n);
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
|
|
mtxidx, n, mtxidx);
|
|
out.Write("\telse indtevtrans{} <<= (-" I_INDTEXMTX "[{}].w);\n", n, mtxidx);
|
|
}
|
|
}
|
|
else if (tevind.matrix_id == IndMtxId::T)
|
|
{
|
|
ASSERT(has_tex_coord);
|
|
out.SetConstantsUsed(C_INDTEXMTX + mtxidx, C_INDTEXMTX + mtxidx);
|
|
|
|
out.Write("\tint2 indtevtrans{} = int2(fixpoint_uv{} * iindtevcrd{}.yy) >> 8;\n", n,
|
|
texcoord, n);
|
|
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_BITWISE_OP_NEGATION))
|
|
{
|
|
out.Write("\tint indtexmtx_w_inverse_{} = -" I_INDTEXMTX "[{}].w;\n", n, mtxidx);
|
|
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
|
|
mtxidx, n, mtxidx);
|
|
out.Write("\telse indtevtrans{} <<= (indtexmtx_w_inverse_{});\n", n, n);
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tif (" I_INDTEXMTX "[{}].w >= 0) indtevtrans{} >>= " I_INDTEXMTX "[{}].w;\n",
|
|
mtxidx, n, mtxidx);
|
|
out.Write("\telse indtevtrans{} <<= (-" I_INDTEXMTX "[{}].w);\n", n, mtxidx);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tint2 indtevtrans{} = int2(0, 0);\n", n);
|
|
ASSERT(false); // Unknown value for matrix_id
|
|
}
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tint2 indtevtrans{} = int2(0, 0);\n", n);
|
|
if (tevind.matrix_index == IndMtxIndex::Off)
|
|
{
|
|
// If matrix_index is Off (0), matrix_id should be Indirect (0)
|
|
ASSERT(tevind.matrix_id == IndMtxId::Indirect);
|
|
}
|
|
}
|
|
|
|
// ---------
|
|
// Wrapping
|
|
// ---------
|
|
|
|
static constexpr std::array<const char*, 5> tev_ind_wrap_start{
|
|
"(256<<7)", "(128<<7)", "(64<<7)", "(32<<7)", "(16<<7)",
|
|
};
|
|
|
|
// wrap S
|
|
if (tevind.sw == IndTexWrap::ITW_OFF)
|
|
{
|
|
out.Write("\twrappedcoord.x = fixpoint_uv{}.x;\n", texcoord);
|
|
}
|
|
else if (tevind.sw >= IndTexWrap::ITW_0) // 7 (Invalid) appears to behave the same as 6 (ITW_0)
|
|
{
|
|
out.Write("\twrappedcoord.x = 0;\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("\twrappedcoord.x = fixpoint_uv{}.x & ({} - 1);\n", texcoord,
|
|
tev_ind_wrap_start[u32(tevind.sw.Value()) - u32(IndTexWrap::ITW_256)]);
|
|
}
|
|
|
|
// wrap T
|
|
if (tevind.tw == IndTexWrap::ITW_OFF)
|
|
{
|
|
out.Write("\twrappedcoord.y = fixpoint_uv{}.y;\n", texcoord);
|
|
}
|
|
else if (tevind.tw >= IndTexWrap::ITW_0) // 7 (Invalid) appears to behave the same as 6 (ITW_0)
|
|
{
|
|
out.Write("\twrappedcoord.y = 0;\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("\twrappedcoord.y = fixpoint_uv{}.y & ({} - 1);\n", texcoord,
|
|
tev_ind_wrap_start[u32(tevind.tw.Value()) - u32(IndTexWrap::ITW_256)]);
|
|
}
|
|
|
|
if (tevind.fb_addprev) // add previous tevcoord
|
|
out.Write("\ttevcoord.xy += wrappedcoord + indtevtrans{};\n", n);
|
|
else
|
|
out.Write("\ttevcoord.xy = wrappedcoord + indtevtrans{};\n", n);
|
|
|
|
// Emulate s24 overflows
|
|
out.Write("\ttevcoord.xy = (tevcoord.xy << 8) >> 8;\n");
|
|
}
|
|
|
|
TevStageCombiner::ColorCombiner cc;
|
|
TevStageCombiner::AlphaCombiner ac;
|
|
cc.hex = stage.cc;
|
|
ac.hex = stage.ac;
|
|
|
|
if (cc.a == TevColorArg::RasAlpha || cc.a == TevColorArg::RasColor ||
|
|
cc.b == TevColorArg::RasAlpha || cc.b == TevColorArg::RasColor ||
|
|
cc.c == TevColorArg::RasAlpha || cc.c == TevColorArg::RasColor ||
|
|
cc.d == TevColorArg::RasAlpha || cc.d == TevColorArg::RasColor ||
|
|
ac.a == TevAlphaArg::RasAlpha || ac.b == TevAlphaArg::RasAlpha ||
|
|
ac.c == TevAlphaArg::RasAlpha || ac.d == TevAlphaArg::RasAlpha)
|
|
{
|
|
// Generate swizzle string to represent the Ras color channel swapping
|
|
const char rasswap[5] = {
|
|
"rgba"[stage.tevksel_swap1a],
|
|
"rgba"[stage.tevksel_swap2a],
|
|
"rgba"[stage.tevksel_swap1b],
|
|
"rgba"[stage.tevksel_swap2b],
|
|
'\0',
|
|
};
|
|
|
|
out.Write("\trastemp = {}.{};\n", tev_ras_table[u32(stage.tevorders_colorchan)], rasswap);
|
|
}
|
|
|
|
if (stage.tevorders_enable && uid_data->genMode_numtexgens > 0)
|
|
{
|
|
// Generate swizzle string to represent the texture color channel swapping
|
|
const char texswap[5] = {
|
|
"rgba"[stage.tevksel_swap1c],
|
|
"rgba"[stage.tevksel_swap2c],
|
|
"rgba"[stage.tevksel_swap1d],
|
|
"rgba"[stage.tevksel_swap2d],
|
|
'\0',
|
|
};
|
|
|
|
out.Write("\ttextemp = ");
|
|
SampleTexture(out, "float2(tevcoord.xy)", texswap, stage.tevorders_texmap, stereo, api_type);
|
|
}
|
|
else if (uid_data->genMode_numtexgens == 0)
|
|
{
|
|
// It seems like the result is always black when no tex coords are enabled, but further testing
|
|
// is needed.
|
|
out.Write("\ttextemp = int4(0, 0, 0, 0);\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("\ttextemp = int4(255, 255, 255, 255);\n");
|
|
}
|
|
|
|
if (cc.a == TevColorArg::Konst || cc.b == TevColorArg::Konst || cc.c == TevColorArg::Konst ||
|
|
cc.d == TevColorArg::Konst || ac.a == TevAlphaArg::Konst || ac.b == TevAlphaArg::Konst ||
|
|
ac.c == TevAlphaArg::Konst || ac.d == TevAlphaArg::Konst)
|
|
{
|
|
out.Write("\tkonsttemp = int4({}, {});\n", tev_ksel_table_c[u32(stage.tevksel_kc)],
|
|
tev_ksel_table_a[u32(stage.tevksel_ka)]);
|
|
|
|
if (u32(stage.tevksel_kc) > 7)
|
|
{
|
|
out.SetConstantsUsed(C_KCOLORS + ((u32(stage.tevksel_kc) - 0xc) % 4),
|
|
C_KCOLORS + ((u32(stage.tevksel_kc) - 0xc) % 4));
|
|
}
|
|
if (u32(stage.tevksel_ka) > 7)
|
|
{
|
|
out.SetConstantsUsed(C_KCOLORS + ((u32(stage.tevksel_ka) - 0xc) % 4),
|
|
C_KCOLORS + ((u32(stage.tevksel_ka) - 0xc) % 4));
|
|
}
|
|
}
|
|
|
|
if (cc.d == TevColorArg::Color0 || cc.d == TevColorArg::Alpha0 || ac.d == TevAlphaArg::Alpha0)
|
|
out.SetConstantsUsed(C_COLORS + 1, C_COLORS + 1);
|
|
|
|
if (cc.d == TevColorArg::Color1 || cc.d == TevColorArg::Alpha1 || ac.d == TevAlphaArg::Alpha1)
|
|
out.SetConstantsUsed(C_COLORS + 2, C_COLORS + 2);
|
|
|
|
if (cc.d == TevColorArg::Color2 || cc.d == TevColorArg::Alpha2 || ac.d == TevAlphaArg::Alpha2)
|
|
out.SetConstantsUsed(C_COLORS + 3, C_COLORS + 3);
|
|
|
|
if (cc.dest >= TevOutput::Color0)
|
|
out.SetConstantsUsed(C_COLORS + u32(cc.dest.Value()), C_COLORS + u32(cc.dest.Value()));
|
|
|
|
if (ac.dest >= TevOutput::Color0)
|
|
out.SetConstantsUsed(C_COLORS + u32(ac.dest.Value()), C_COLORS + u32(ac.dest.Value()));
|
|
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_VECTOR_BITWISE_AND))
|
|
{
|
|
out.Write("\ttevin_a = int4({} & 255, {} & 255);\n", tev_c_input_table[u32(cc.a.Value())],
|
|
tev_a_input_table[u32(ac.a.Value())]);
|
|
out.Write("\ttevin_b = int4({} & 255, {} & 255);\n", tev_c_input_table[u32(cc.b.Value())],
|
|
tev_a_input_table[u32(ac.b.Value())]);
|
|
out.Write("\ttevin_c = int4({} & 255, {} & 255);\n", tev_c_input_table[u32(cc.c.Value())],
|
|
tev_a_input_table[u32(ac.c.Value())]);
|
|
}
|
|
else
|
|
{
|
|
out.Write("\ttevin_a = int4({}, {})&int4(255, 255, 255, 255);\n",
|
|
tev_c_input_table[u32(cc.a.Value())], tev_a_input_table[u32(ac.a.Value())]);
|
|
out.Write("\ttevin_b = int4({}, {})&int4(255, 255, 255, 255);\n",
|
|
tev_c_input_table[u32(cc.b.Value())], tev_a_input_table[u32(ac.b.Value())]);
|
|
out.Write("\ttevin_c = int4({}, {})&int4(255, 255, 255, 255);\n",
|
|
tev_c_input_table[u32(cc.c.Value())], tev_a_input_table[u32(ac.c.Value())]);
|
|
}
|
|
out.Write("\ttevin_d = int4({}, {});\n", tev_c_input_table[u32(cc.d.Value())],
|
|
tev_a_input_table[u32(ac.d.Value())]);
|
|
|
|
out.Write("\t// color combine\n");
|
|
out.Write("\t{} = clamp(", tev_c_output_table[u32(cc.dest.Value())]);
|
|
if (cc.bias != TevBias::Compare)
|
|
{
|
|
WriteTevRegular(out, "rgb", cc.bias, cc.op, cc.clamp, cc.scale, false);
|
|
}
|
|
else
|
|
{
|
|
static constexpr std::array<const char*, 8> function_table{
|
|
"((tevin_a.r > tevin_b.r) ? tevin_c.rgb : int3(0,0,0))", // TevCompareMode::R8, GT
|
|
"((tevin_a.r == tevin_b.r) ? tevin_c.rgb : int3(0,0,0))", // R8, TevComparison::EQ
|
|
"((idot(tevin_a.rgb, comp16) > idot(tevin_b.rgb, comp16)) ? tevin_c.rgb : "
|
|
"int3(0,0,0))", // GR16, GT
|
|
"((idot(tevin_a.rgb, comp16) == idot(tevin_b.rgb, comp16)) ? tevin_c.rgb : "
|
|
"int3(0,0,0))", // GR16, EQ
|
|
"((idot(tevin_a.rgb, comp24) > idot(tevin_b.rgb, comp24)) ? tevin_c.rgb : "
|
|
"int3(0,0,0))", // BGR24, GT
|
|
"((idot(tevin_a.rgb, comp24) == idot(tevin_b.rgb, comp24)) ? tevin_c.rgb : "
|
|
"int3(0,0,0))", // BGR24, EQ
|
|
"(max(sign(tevin_a.rgb - tevin_b.rgb), int3(0,0,0)) * tevin_c.rgb)", // RGB8, GT
|
|
"((int3(1,1,1) - sign(abs(tevin_a.rgb - tevin_b.rgb))) * tevin_c.rgb)" // RGB8, EQ
|
|
};
|
|
|
|
const u32 mode = (u32(cc.compare_mode.Value()) << 1) | u32(cc.comparison.Value());
|
|
out.Write(" tevin_d.rgb + ");
|
|
out.Write("{}", function_table[mode]);
|
|
}
|
|
if (cc.clamp)
|
|
out.Write(", int3(0,0,0), int3(255,255,255))");
|
|
else
|
|
out.Write(", int3(-1024,-1024,-1024), int3(1023,1023,1023))");
|
|
out.Write(";\n");
|
|
|
|
out.Write("\t// alpha combine\n");
|
|
out.Write("\t{} = clamp(", tev_a_output_table[u32(ac.dest.Value())]);
|
|
if (ac.bias != TevBias::Compare)
|
|
{
|
|
WriteTevRegular(out, "a", ac.bias, ac.op, ac.clamp, ac.scale, true);
|
|
}
|
|
else
|
|
{
|
|
static constexpr std::array<const char*, 8> function_table{
|
|
"((tevin_a.r > tevin_b.r) ? tevin_c.a : 0)", // TevCompareMode::R8, GT
|
|
"((tevin_a.r == tevin_b.r) ? tevin_c.a : 0)", // R8, TevComparison::EQ
|
|
"((idot(tevin_a.rgb, comp16) > idot(tevin_b.rgb, comp16)) ? tevin_c.a : 0)", // GR16, GT
|
|
"((idot(tevin_a.rgb, comp16) == idot(tevin_b.rgb, comp16)) ? tevin_c.a : 0)", // GR16, EQ
|
|
"((idot(tevin_a.rgb, comp24) > idot(tevin_b.rgb, comp24)) ? tevin_c.a : 0)", // BGR24, GT
|
|
"((idot(tevin_a.rgb, comp24) == idot(tevin_b.rgb, comp24)) ? tevin_c.a : 0)", // BGR24, EQ
|
|
"((tevin_a.a > tevin_b.a) ? tevin_c.a : 0)", // A8, GT
|
|
"((tevin_a.a == tevin_b.a) ? tevin_c.a : 0)" // A8, EQ
|
|
};
|
|
|
|
const u32 mode = (u32(ac.compare_mode.Value()) << 1) | u32(ac.comparison.Value());
|
|
out.Write(" tevin_d.a + ");
|
|
out.Write("{}", function_table[mode]);
|
|
}
|
|
if (ac.clamp)
|
|
out.Write(", 0, 255)");
|
|
else
|
|
out.Write(", -1024, 1023)");
|
|
|
|
out.Write(";\n");
|
|
}
|
|
|
|
static void WriteTevRegular(ShaderCode& out, std::string_view components, TevBias bias, TevOp op,
|
|
bool clamp, TevScale scale, bool alpha)
|
|
{
|
|
static constexpr std::array<const char*, 4> tev_scale_table_left{
|
|
"", // Scale1
|
|
" << 1", // Scale2
|
|
" << 2", // Scale4
|
|
"", // Divide2
|
|
};
|
|
|
|
static constexpr std::array<const char*, 4> tev_scale_table_right{
|
|
"", // Scale1
|
|
"", // Scale2
|
|
"", // Scale4
|
|
" >> 1", // Divide2
|
|
};
|
|
|
|
// indexed by 2*op+(scale==Divide2)
|
|
static constexpr std::array<const char*, 4> tev_lerp_bias{
|
|
"",
|
|
" + 128",
|
|
"",
|
|
" + 127",
|
|
};
|
|
|
|
static constexpr std::array<const char*, 4> tev_bias_table{
|
|
"", // Zero,
|
|
" + 128", // AddHalf,
|
|
" - 128", // SubHalf,
|
|
"",
|
|
};
|
|
|
|
static constexpr std::array<char, 2> tev_op_table{
|
|
'+', // TevOp::Add = 0,
|
|
'-', // TevOp::Sub = 1,
|
|
};
|
|
|
|
// Regular TEV stage: (d + bias + lerp(a,b,c)) * scale
|
|
// The GameCube/Wii GPU uses a very sophisticated algorithm for scale-lerping:
|
|
// - c is scaled from 0..255 to 0..256, which allows dividing the result by 256 instead of 255
|
|
// - if scale is bigger than one, it is moved inside the lerp calculation for increased accuracy
|
|
// - a rounding bias is added before dividing by 256
|
|
out.Write("(((tevin_d.{}{}){})", components, tev_bias_table[u32(bias)],
|
|
tev_scale_table_left[u32(scale)]);
|
|
out.Write(" {} ", tev_op_table[u32(op)]);
|
|
out.Write("(((((tevin_a.{}<<8) + (tevin_b.{}-tevin_a.{})*(tevin_c.{}+(tevin_c.{}>>7))){}){})>>8)",
|
|
components, components, components, components, components,
|
|
tev_scale_table_left[u32(scale)],
|
|
tev_lerp_bias[2 * u32(op) + ((scale == TevScale::Divide2) == alpha)]);
|
|
out.Write("){}", tev_scale_table_right[u32(scale)]);
|
|
}
|
|
|
|
static void SampleTexture(ShaderCode& out, std::string_view texcoords, std::string_view texswap,
|
|
int texmap, bool stereo, APIType api_type)
|
|
{
|
|
out.SetConstantsUsed(C_TEXDIMS + texmap, C_TEXDIMS + texmap);
|
|
|
|
if (api_type == APIType::D3D)
|
|
{
|
|
out.Write("iround(255.0 * Tex[{}].Sample(samp[{}], float3({}.xy * " I_TEXDIMS
|
|
"[{}].xy, {}))).{};\n",
|
|
texmap, texmap, texcoords, texmap, stereo ? "layer" : "0.0", texswap);
|
|
}
|
|
else
|
|
{
|
|
out.Write("iround(255.0 * texture(samp[{}], float3({}.xy * " I_TEXDIMS "[{}].xy, {}))).{};\n",
|
|
texmap, texcoords, texmap, stereo ? "layer" : "0.0", texswap);
|
|
}
|
|
}
|
|
|
|
constexpr std::array<const char*, 8> tev_alpha_funcs_table{
|
|
"(false)", // CompareMode::Never
|
|
"(prev.a < {})", // CompareMode::Less
|
|
"(prev.a == {})", // CompareMode::Equal
|
|
"(prev.a <= {})", // CompareMode::LEqual
|
|
"(prev.a > {})", // CompareMode::Greater
|
|
"(prev.a != {})", // CompareMode::NEqual
|
|
"(prev.a >= {})", // CompareMode::GEqual
|
|
"(true)" // CompareMode::Always
|
|
};
|
|
|
|
constexpr std::array<const char*, 4> tev_alpha_funclogic_table{
|
|
" && ", // and
|
|
" || ", // or
|
|
" != ", // xor
|
|
" == " // xnor
|
|
};
|
|
|
|
static void WriteAlphaTest(ShaderCode& out, const pixel_shader_uid_data* uid_data, APIType api_type,
|
|
bool per_pixel_depth, bool use_dual_source)
|
|
{
|
|
static constexpr std::array<std::string_view, 2> alpha_ref{
|
|
I_ALPHA ".r",
|
|
I_ALPHA ".g",
|
|
};
|
|
|
|
const auto write_alpha_func = [&out](CompareMode mode, std::string_view ref) {
|
|
const bool has_no_arguments = mode == CompareMode::Never || mode == CompareMode::Always;
|
|
if (has_no_arguments)
|
|
out.Write("{}", tev_alpha_funcs_table[u32(mode)]);
|
|
else
|
|
out.Write(tev_alpha_funcs_table[u32(mode)], ref);
|
|
};
|
|
|
|
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
|
|
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_NEGATED_BOOLEAN))
|
|
out.Write("\tif(( ");
|
|
else
|
|
out.Write("\tif(!( ");
|
|
|
|
// Lookup the first component from the alpha function table
|
|
write_alpha_func(uid_data->alpha_test_comp0, alpha_ref[0]);
|
|
|
|
// Lookup the logic op
|
|
out.Write("{}", tev_alpha_funclogic_table[u32(uid_data->alpha_test_logic)]);
|
|
|
|
// Lookup the second component from the alpha function table
|
|
write_alpha_func(uid_data->alpha_test_comp1, alpha_ref[1]);
|
|
|
|
if (DriverDetails::HasBug(DriverDetails::BUG_BROKEN_NEGATED_BOOLEAN))
|
|
out.Write(") == false) {{\n");
|
|
else
|
|
out.Write(")) {{\n");
|
|
|
|
out.Write("\t\tocol0 = float4(0.0, 0.0, 0.0, 0.0);\n");
|
|
if (use_dual_source && !(api_type == APIType::D3D && uid_data->uint_output))
|
|
out.Write("\t\tocol1 = float4(0.0, 0.0, 0.0, 0.0);\n");
|
|
if (per_pixel_depth)
|
|
{
|
|
out.Write("\t\tdepth = {};\n",
|
|
!g_ActiveConfig.backend_info.bSupportsReversedDepthRange ? "0.0" : "1.0");
|
|
}
|
|
|
|
// ZCOMPLOC HACK:
|
|
if (!uid_data->alpha_test_use_zcomploc_hack)
|
|
{
|
|
out.Write("\t\tdiscard;\n");
|
|
if (api_type == APIType::D3D)
|
|
out.Write("\t\treturn;\n");
|
|
}
|
|
|
|
out.Write("\t}}\n");
|
|
}
|
|
|
|
constexpr std::array<const char*, 8> tev_fog_funcs_table{
|
|
"", // No Fog
|
|
"", // ?
|
|
"", // Linear
|
|
"", // ?
|
|
"\tfog = 1.0 - exp2(-8.0 * fog);\n", // exp
|
|
"\tfog = 1.0 - exp2(-8.0 * fog * fog);\n", // exp2
|
|
"\tfog = exp2(-8.0 * (1.0 - fog));\n", // backward exp
|
|
"\tfog = 1.0 - fog;\n fog = exp2(-8.0 * fog * fog);\n" // backward exp2
|
|
};
|
|
|
|
static void WriteFog(ShaderCode& out, const pixel_shader_uid_data* uid_data)
|
|
{
|
|
if (uid_data->fog_fsel == FogType::Off)
|
|
return; // no Fog
|
|
|
|
out.SetConstantsUsed(C_FOGCOLOR, C_FOGCOLOR);
|
|
out.SetConstantsUsed(C_FOGI, C_FOGI);
|
|
out.SetConstantsUsed(C_FOGF, C_FOGF + 1);
|
|
if (uid_data->fog_proj == FogProjection::Perspective)
|
|
{
|
|
// perspective
|
|
// ze = A/(B - (Zs >> B_SHF)
|
|
// TODO: Verify that we want to drop lower bits here! (currently taken over from software
|
|
// renderer)
|
|
// Maybe we want to use "ze = (A << B_SHF)/((B << B_SHF) - Zs)" instead?
|
|
// That's equivalent, but keeps the lower bits of Zs.
|
|
out.Write("\tfloat ze = (" I_FOGF ".x * 16777216.0) / float(" I_FOGI ".y - (zCoord >> " I_FOGI
|
|
".w));\n");
|
|
}
|
|
else
|
|
{
|
|
// orthographic
|
|
// ze = a*Zs (here, no B_SHF)
|
|
out.Write("\tfloat ze = " I_FOGF ".x * float(zCoord) / 16777216.0;\n");
|
|
}
|
|
|
|
// x_adjust = sqrt((x-center)^2 + k^2)/k
|
|
// ze *= x_adjust
|
|
if (uid_data->fog_RangeBaseEnabled)
|
|
{
|
|
out.SetConstantsUsed(C_FOGF, C_FOGF);
|
|
out.Write("\tfloat offset = (2.0 * (rawpos.x / " I_FOGF ".w)) - 1.0 - " I_FOGF ".z;\n"
|
|
"\tfloat floatindex = clamp(9.0 - abs(offset) * 9.0, 0.0, 9.0);\n"
|
|
"\tuint indexlower = uint(floatindex);\n"
|
|
"\tuint indexupper = indexlower + 1u;\n"
|
|
"\tfloat klower = " I_FOGRANGE "[indexlower >> 2u][indexlower & 3u];\n"
|
|
"\tfloat kupper = " I_FOGRANGE "[indexupper >> 2u][indexupper & 3u];\n"
|
|
"\tfloat k = lerp(klower, kupper, frac(floatindex));\n"
|
|
"\tfloat x_adjust = sqrt(offset * offset + k * k) / k;\n"
|
|
"\tze *= x_adjust;\n");
|
|
}
|
|
|
|
out.Write("\tfloat fog = clamp(ze - " I_FOGF ".y, 0.0, 1.0);\n");
|
|
|
|
if (uid_data->fog_fsel >= FogType::Exp)
|
|
{
|
|
out.Write("{}", tev_fog_funcs_table[u32(uid_data->fog_fsel)]);
|
|
}
|
|
else
|
|
{
|
|
if (uid_data->fog_fsel != FogType::Linear)
|
|
WARN_LOG_FMT(VIDEO, "Unknown Fog Type! {}", uid_data->fog_fsel);
|
|
}
|
|
|
|
out.Write("\tint ifog = iround(fog * 256.0);\n");
|
|
out.Write("\tprev.rgb = (prev.rgb * (256 - ifog) + " I_FOGCOLOR ".rgb * ifog) >> 8;\n");
|
|
}
|
|
|
|
static void WriteColor(ShaderCode& out, APIType api_type, const pixel_shader_uid_data* uid_data,
|
|
bool use_dual_source)
|
|
{
|
|
// D3D requires that the shader outputs be uint when writing to a uint render target for logic op.
|
|
if (api_type == APIType::D3D && uid_data->uint_output)
|
|
{
|
|
if (uid_data->rgba6_format)
|
|
out.Write("\tocol0 = uint4(prev & 0xFC);\n");
|
|
else
|
|
out.Write("\tocol0 = uint4(prev);\n");
|
|
return;
|
|
}
|
|
|
|
if (uid_data->rgba6_format)
|
|
out.Write("\tocol0.rgb = float3(prev.rgb >> 2) / 63.0;\n");
|
|
else
|
|
out.Write("\tocol0.rgb = float3(prev.rgb) / 255.0;\n");
|
|
|
|
// Colors will be blended against the 8-bit alpha from ocol1 and
|
|
// the 6-bit alpha from ocol0 will be written to the framebuffer
|
|
if (uid_data->useDstAlpha)
|
|
{
|
|
out.SetConstantsUsed(C_ALPHA, C_ALPHA);
|
|
out.Write("\tocol0.a = float(" I_ALPHA ".a >> 2) / 63.0;\n");
|
|
|
|
// Use dual-source color blending to perform dst alpha in a single pass
|
|
if (use_dual_source)
|
|
out.Write("\tocol1 = float4(0.0, 0.0, 0.0, float(prev.a) / 255.0);\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tocol0.a = float(prev.a >> 2) / 63.0;\n");
|
|
if (use_dual_source)
|
|
out.Write("\tocol1 = float4(0.0, 0.0, 0.0, float(prev.a) / 255.0);\n");
|
|
}
|
|
}
|
|
|
|
static void WriteBlend(ShaderCode& out, const pixel_shader_uid_data* uid_data)
|
|
{
|
|
if (uid_data->blend_enable)
|
|
{
|
|
static constexpr std::array<const char*, 8> blend_src_factor{
|
|
"float3(0,0,0);", // ZERO
|
|
"float3(1,1,1);", // ONE
|
|
"initial_ocol0.rgb;", // DSTCLR
|
|
"float3(1,1,1) - initial_ocol0.rgb;", // INVDSTCLR
|
|
"ocol1.aaa;", // SRCALPHA
|
|
"float3(1,1,1) - ocol1.aaa;", // INVSRCALPHA
|
|
"initial_ocol0.aaa;", // DSTALPHA
|
|
"float3(1,1,1) - initial_ocol0.aaa;", // INVDSTALPHA
|
|
};
|
|
static constexpr std::array<const char*, 8> blend_src_factor_alpha{
|
|
"0.0;", // ZERO
|
|
"1.0;", // ONE
|
|
"initial_ocol0.a;", // DSTCLR
|
|
"1.0 - initial_ocol0.a;", // INVDSTCLR
|
|
"ocol1.a;", // SRCALPHA
|
|
"1.0 - ocol1.a;", // INVSRCALPHA
|
|
"initial_ocol0.a;", // DSTALPHA
|
|
"1.0 - initial_ocol0.a;", // INVDSTALPHA
|
|
};
|
|
static constexpr std::array<const char*, 8> blend_dst_factor{
|
|
"float3(0,0,0);", // ZERO
|
|
"float3(1,1,1);", // ONE
|
|
"ocol0.rgb;", // SRCCLR
|
|
"float3(1,1,1) - ocol0.rgb;", // INVSRCCLR
|
|
"ocol1.aaa;", // SRCALHA
|
|
"float3(1,1,1) - ocol1.aaa;", // INVSRCALPHA
|
|
"initial_ocol0.aaa;", // DSTALPHA
|
|
"float3(1,1,1) - initial_ocol0.aaa;", // INVDSTALPHA
|
|
};
|
|
static constexpr std::array<const char*, 8> blend_dst_factor_alpha{
|
|
"0.0;", // ZERO
|
|
"1.0;", // ONE
|
|
"ocol0.a;", // SRCCLR
|
|
"1.0 - ocol0.a;", // INVSRCCLR
|
|
"ocol1.a;", // SRCALPHA
|
|
"1.0 - ocol1.a;", // INVSRCALPHA
|
|
"initial_ocol0.a;", // DSTALPHA
|
|
"1.0 - initial_ocol0.a;", // INVDSTALPHA
|
|
};
|
|
out.Write("\tfloat4 blend_src;\n");
|
|
out.Write("\tblend_src.rgb = {}\n", blend_src_factor[u32(uid_data->blend_src_factor)]);
|
|
out.Write("\tblend_src.a = {}\n",
|
|
blend_src_factor_alpha[u32(uid_data->blend_src_factor_alpha)]);
|
|
out.Write("\tfloat4 blend_dst;\n");
|
|
out.Write("\tblend_dst.rgb = {}\n", blend_dst_factor[u32(uid_data->blend_dst_factor)]);
|
|
out.Write("\tblend_dst.a = {}\n",
|
|
blend_dst_factor_alpha[u32(uid_data->blend_dst_factor_alpha)]);
|
|
|
|
out.Write("\tfloat4 blend_result;\n");
|
|
if (uid_data->blend_subtract)
|
|
{
|
|
out.Write("\tblend_result.rgb = initial_ocol0.rgb * blend_dst.rgb - ocol0.rgb * "
|
|
"blend_src.rgb;\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write(
|
|
"\tblend_result.rgb = initial_ocol0.rgb * blend_dst.rgb + ocol0.rgb * blend_src.rgb;\n");
|
|
}
|
|
|
|
if (uid_data->blend_subtract_alpha)
|
|
out.Write("\tblend_result.a = initial_ocol0.a * blend_dst.a - ocol0.a * blend_src.a;\n");
|
|
else
|
|
out.Write("\tblend_result.a = initial_ocol0.a * blend_dst.a + ocol0.a * blend_src.a;\n");
|
|
}
|
|
else
|
|
{
|
|
out.Write("\tfloat4 blend_result = ocol0;\n");
|
|
}
|
|
|
|
out.Write("\treal_ocol0 = blend_result;\n");
|
|
}
|