dolphin/Source/Core/Common/x64Emitter.cpp
Lioncash c22a6f4551 x64Emitter: Move FloatOp and NormalOp enums to the cpp file
These are only used internally. This also allows us to eliminate some
symbols that get dumped into the exposed Gen namespace.

By extension this also hides the Write[X] functions from OpArg's public
interface. This is only used internally by XEmitter, so they shouldn't
be usable by anything else.
2018-03-18 18:04:48 -04:00

3324 lines
78 KiB
C++

// Copyright 2008 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include <cinttypes>
#include <cstring>
#include "Common/CPUDetect.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/x64Emitter.h"
#include "Common/x64Reg.h"
namespace Gen
{
// TODO(ector): Add EAX special casing, for ever so slightly smaller code.
struct NormalOpDef
{
u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext;
};
// 0xCC is code for invalid combination of immediates
static const NormalOpDef normalops[11] = {
{0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD
{0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC
{0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB
{0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB
{0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND
{0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR
{0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR
{0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV
{0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from)
{0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP
{0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG
};
enum NormalSSEOps
{
sseCMP = 0xC2,
sseADD = 0x58, // ADD
sseSUB = 0x5C, // SUB
sseAND = 0x54, // AND
sseANDN = 0x55, // ANDN
sseOR = 0x56,
sseXOR = 0x57,
sseMUL = 0x59, // MUL
sseDIV = 0x5E, // DIV
sseMIN = 0x5D, // MIN
sseMAX = 0x5F, // MAX
sseCOMIS = 0x2F, // COMIS
sseUCOMIS = 0x2E, // UCOMIS
sseSQRT = 0x51, // SQRT
sseRCP = 0x53, // RCP
sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!)
sseMOVAPfromRM = 0x28, // MOVAP from RM
sseMOVAPtoRM = 0x29, // MOVAP to RM
sseMOVUPfromRM = 0x10, // MOVUP from RM
sseMOVUPtoRM = 0x11, // MOVUP to RM
sseMOVLPfromRM = 0x12,
sseMOVLPtoRM = 0x13,
sseMOVHPfromRM = 0x16,
sseMOVHPtoRM = 0x17,
sseMOVHLPS = 0x12,
sseMOVLHPS = 0x16,
sseMOVDQfromRM = 0x6F,
sseMOVDQtoRM = 0x7F,
sseMASKMOVDQU = 0xF7,
sseLDDQU = 0xF0,
sseSHUF = 0xC6,
sseMOVNTDQ = 0xE7,
sseMOVNTP = 0x2B,
};
enum NormalOp : int
{
nrmADD,
nrmADC,
nrmSUB,
nrmSBB,
nrmAND,
nrmOR,
nrmXOR,
nrmMOV,
nrmTEST,
nrmCMP,
nrmXCHG,
};
enum FloatOp : int
{
floatLD = 0,
floatST = 2,
floatSTP = 3,
floatLD80 = 5,
floatSTP80 = 7,
floatINVALID = -1,
};
void XEmitter::SetCodePtr(u8* ptr)
{
code = ptr;
}
const u8* XEmitter::GetCodePtr() const
{
return code;
}
u8* XEmitter::GetWritableCodePtr()
{
return code;
}
void XEmitter::Write8(u8 value)
{
*code++ = value;
}
void XEmitter::Write16(u16 value)
{
std::memcpy(code, &value, sizeof(u16));
code += sizeof(u16);
}
void XEmitter::Write32(u32 value)
{
std::memcpy(code, &value, sizeof(u32));
code += sizeof(u32);
}
void XEmitter::Write64(u64 value)
{
std::memcpy(code, &value, sizeof(u64));
code += sizeof(u64);
}
void XEmitter::ReserveCodeSpace(int bytes)
{
for (int i = 0; i < bytes; i++)
*code++ = 0xCC;
}
const u8* XEmitter::AlignCodeTo(size_t alignment)
{
ASSERT_MSG(DYNA_REC, alignment != 0 && (alignment & (alignment - 1)) == 0,
"Alignment must be power of two");
u64 c = reinterpret_cast<u64>(code) & (alignment - 1);
if (c)
ReserveCodeSpace(static_cast<int>(alignment - c));
return code;
}
const u8* XEmitter::AlignCode4()
{
return AlignCodeTo(4);
}
const u8* XEmitter::AlignCode16()
{
return AlignCodeTo(16);
}
const u8* XEmitter::AlignCodePage()
{
return AlignCodeTo(4096);
}
// This operation modifies flags; check to see the flags are locked.
// If the flags are locked, we should immediately and loudly fail before
// causing a subtle JIT bug.
void XEmitter::CheckFlags()
{
ASSERT_MSG(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!");
}
void XEmitter::WriteModRM(int mod, int reg, int rm)
{
Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7)));
}
void XEmitter::WriteSIB(int scale, int index, int base)
{
Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7)));
}
void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const
{
if (customOp == -1)
customOp = operandReg;
u8 op = 0x40;
// REX.W (whether operation is a 64-bit operation)
if (opBits == 64)
op |= 8;
// REX.R (whether ModR/M reg field refers to R8-R15.
if (customOp & 8)
op |= 4;
// REX.X (whether ModR/M SIB index field refers to R8-R15)
if (indexReg & 8)
op |= 2;
// REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15)
if (offsetOrBaseReg & 8)
op |= 1;
// Write REX if wr have REX bits to write, or if the operation accesses
// SIL, DIL, BPL, or SPL.
if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) ||
(opBits == 8 && (customOp & 0x10c) == 4))
{
emit->Write8(op);
// Check the operation doesn't access AH, BH, CH, or DH.
DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0);
DEBUG_ASSERT((customOp & 0x100) == 0);
}
}
void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm,
int W) const
{
int R = !(regOp1 & 8);
int X = !(indexReg & 8);
int B = !(offsetOrBaseReg & 8);
int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf);
// do we need any VEX fields that only appear in the three-byte form?
if (X == 1 && B == 1 && W == 0 && mmmmm == 1)
{
u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp;
emit->Write8(0xC5);
emit->Write8(RvvvvLpp);
}
else
{
u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm;
u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp;
emit->Write8(0xC4);
emit->Write8(RXBmmmmm);
emit->Write8(WvvvvLpp);
}
}
void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg,
bool warn_64bit_offset) const
{
if (_operandReg == INVALID_REG)
_operandReg = (X64Reg) this->operandReg;
int mod = 0;
int ireg = indexReg;
bool SIB = false;
int _offsetOrBaseReg = this->offsetOrBaseReg;
if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address
{
// Oh, RIP addressing.
_offsetOrBaseReg = 5;
emit->WriteModRM(0, _operandReg, _offsetOrBaseReg);
// TODO : add some checks
u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes;
s64 distance = (s64)offset - (s64)ripAddr;
ASSERT_MSG(DYNA_REC,
(distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset,
"WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset);
s32 offs = (s32)distance;
emit->Write32((u32)offs);
return;
}
if (scale == 0)
{
// Oh, no memory, Just a reg.
mod = 3; // 11
}
else
{
// Ah good, no scaling.
if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5))
{
// Okay, we're good. No SIB necessary.
int ioff = (int)offset;
if (ioff == 0)
{
mod = 0;
}
else if (ioff < -128 || ioff > 127)
{
mod = 2; // 32-bit displacement
}
else
{
mod = 1; // 8-bit displacement
}
}
else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)
{
SIB = true;
mod = 0;
_offsetOrBaseReg = 5;
}
else
{
if ((_offsetOrBaseReg & 7) == 4) // this would occupy the SIB encoding :(
{
// So we have to fake it with SIB encoding :(
SIB = true;
}
if (scale >= SCALE_1 && scale < SCALE_ATREG)
{
SIB = true;
}
if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4))
{
SIB = true;
ireg = _offsetOrBaseReg;
}
// Okay, we're fine. Just disp encoding.
// We need displacement. Which size?
int ioff = (int)(s64)offset;
if (ioff < -128 || ioff > 127)
{
mod = 2; // 32-bit displacement
}
else
{
mod = 1; // 8-bit displacement
}
}
}
// Okay. Time to do the actual writing
// ModRM byte:
int oreg = _offsetOrBaseReg;
if (SIB)
oreg = 4;
emit->WriteModRM(mod, _operandReg & 7, oreg & 7);
if (SIB)
{
// SIB byte
int ss;
switch (scale)
{
case SCALE_NONE:
_offsetOrBaseReg = 4;
ss = 0;
break; // RSP
case SCALE_1:
ss = 0;
break;
case SCALE_2:
ss = 1;
break;
case SCALE_4:
ss = 2;
break;
case SCALE_8:
ss = 3;
break;
case SCALE_NOBASE_2:
ss = 1;
break;
case SCALE_NOBASE_4:
ss = 2;
break;
case SCALE_NOBASE_8:
ss = 3;
break;
case SCALE_ATREG:
ss = 0;
break;
default:
ASSERT_MSG(DYNA_REC, 0, "Invalid scale for SIB byte");
ss = 0;
break;
}
emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7)));
}
if (mod == 1) // 8-bit disp
{
emit->Write8((u8)(s8)(s32)offset);
}
else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp
{
emit->Write32((u32)offset);
}
}
// W = operand extended width (1 if 64-bit)
// R = register# upper bit
// X = scale amnt upper bit
// B = base register# upper bit
void XEmitter::Rex(int w, int r, int x, int b)
{
w = w ? 1 : 0;
r = r ? 1 : 0;
x = x ? 1 : 0;
b = b ? 1 : 0;
u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b));
if (rx != 0x40)
Write8(rx);
}
void XEmitter::JMP(const u8* addr, bool force5Bytes)
{
u64 fn = (u64)addr;
if (!force5Bytes)
{
s64 distance = (s64)(fn - ((u64)code + 2));
ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80,
"Jump target too far away, needs force5Bytes = true");
// 8 bits will do
Write8(0xEB);
Write8((u8)(s8)distance);
}
else
{
s64 distance = (s64)(fn - ((u64)code + 5));
ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
Write8(0xE9);
Write32((u32)(s32)distance);
}
}
void XEmitter::JMPptr(const OpArg& arg2)
{
OpArg arg = arg2;
if (arg.IsImm())
ASSERT_MSG(DYNA_REC, 0, "JMPptr - Imm argument");
arg.operandReg = 4;
arg.WriteREX(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
// Can be used to trap other processors, before overwriting their code
// not used in Dolphin
void XEmitter::JMPself()
{
Write8(0xEB);
Write8(0xFE);
}
void XEmitter::CALLptr(OpArg arg)
{
if (arg.IsImm())
ASSERT_MSG(DYNA_REC, 0, "CALLptr - Imm argument");
arg.operandReg = 2;
arg.WriteREX(this, 0, 0);
Write8(0xFF);
arg.WriteRest(this);
}
void XEmitter::CALL(const void* fnptr)
{
u64 distance = u64(fnptr) - (u64(code) + 5);
ASSERT_MSG(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL,
"CALL out of range (%p calls %p)", code, fnptr);
Write8(0xE8);
Write32(u32(distance));
}
FixupBranch XEmitter::CALL()
{
FixupBranch branch;
branch.type = 1;
branch.ptr = code + 5;
Write8(0xE8);
Write32(0);
return branch;
}
FixupBranch XEmitter::J(bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 5 : 2);
if (!force5bytes)
{
// 8 bits will do
Write8(0xEB);
Write8(0);
}
else
{
Write8(0xE9);
Write32(0);
}
return branch;
}
FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes)
{
FixupBranch branch;
branch.type = force5bytes ? 1 : 0;
branch.ptr = code + (force5bytes ? 6 : 2);
if (!force5bytes)
{
// 8 bits will do
Write8(0x70 + conditionCode);
Write8(0);
}
else
{
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32(0);
}
return branch;
}
void XEmitter::J_CC(CCFlags conditionCode, const u8* addr)
{
u64 fn = (u64)addr;
s64 distance = (s64)(fn - ((u64)code + 2));
if (distance < -0x80 || distance >= 0x80)
{
distance = (s64)(fn - ((u64)code + 6));
ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
Write8(0x0F);
Write8(0x80 + conditionCode);
Write32((u32)(s32)distance);
}
else
{
Write8(0x70 + conditionCode);
Write8((u8)(s8)distance);
}
}
void XEmitter::SetJumpTarget(const FixupBranch& branch)
{
if (branch.type == 0)
{
s64 distance = (s64)(code - branch.ptr);
ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80,
"Jump target too far away, needs force5Bytes = true");
branch.ptr[-1] = (u8)(s8)distance;
}
else if (branch.type == 1)
{
s64 distance = (s64)(code - branch.ptr);
ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL,
"Jump target too far away, needs indirect register");
s32 valid_distance = static_cast<s32>(distance);
std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32));
}
}
// Single byte opcodes
// There is no PUSHAD/POPAD in 64-bit mode.
void XEmitter::INT3()
{
Write8(0xCC);
}
void XEmitter::RET()
{
Write8(0xC3);
}
void XEmitter::RET_FAST()
{
Write8(0xF3);
Write8(0xC3);
} // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to
// a ret
// The first sign of decadence: optimized NOPs.
void XEmitter::NOP(size_t size)
{
DEBUG_ASSERT((int)size > 0);
while (true)
{
switch (size)
{
case 0:
return;
case 1:
Write8(0x90);
return;
case 2:
Write8(0x66);
Write8(0x90);
return;
case 3:
Write8(0x0F);
Write8(0x1F);
Write8(0x00);
return;
case 4:
Write8(0x0F);
Write8(0x1F);
Write8(0x40);
Write8(0x00);
return;
case 5:
Write8(0x0F);
Write8(0x1F);
Write8(0x44);
Write8(0x00);
Write8(0x00);
return;
case 6:
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x44);
Write8(0x00);
Write8(0x00);
return;
case 7:
Write8(0x0F);
Write8(0x1F);
Write8(0x80);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
case 8:
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
case 9:
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
case 10:
Write8(0x66);
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
return;
default:
// Even though x86 instructions are allowed to be up to 15 bytes long,
// AMD advises against using NOPs longer than 11 bytes because they
// carry a performance penalty on CPUs older than AMD family 16h.
Write8(0x66);
Write8(0x66);
Write8(0x66);
Write8(0x0F);
Write8(0x1F);
Write8(0x84);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
Write8(0x00);
size -= 11;
continue;
}
}
}
void XEmitter::PAUSE()
{
Write8(0xF3);
NOP();
} // use in tight spinloops for energy saving on some CPU
void XEmitter::CLC()
{
CheckFlags();
Write8(0xF8);
} // clear carry
void XEmitter::CMC()
{
CheckFlags();
Write8(0xF5);
} // flip carry
void XEmitter::STC()
{
CheckFlags();
Write8(0xF9);
} // set carry
// TODO: xchg ah, al ???
void XEmitter::XCHG_AHAL()
{
Write8(0x86);
Write8(0xe0);
// alt. 86 c4
}
// These two can not be executed on early Intel 64-bit CPU:s, only on AMD!
void XEmitter::LAHF()
{
Write8(0x9F);
}
void XEmitter::SAHF()
{
CheckFlags();
Write8(0x9E);
}
void XEmitter::PUSHF()
{
Write8(0x9C);
}
void XEmitter::POPF()
{
CheckFlags();
Write8(0x9D);
}
void XEmitter::LFENCE()
{
Write8(0x0F);
Write8(0xAE);
Write8(0xE8);
}
void XEmitter::MFENCE()
{
Write8(0x0F);
Write8(0xAE);
Write8(0xF0);
}
void XEmitter::SFENCE()
{
Write8(0x0F);
Write8(0xAE);
Write8(0xF8);
}
void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg)
{
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte + ((int)reg & 7));
}
void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg)
{
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, (int)reg >> 3);
Write8(byte1);
Write8(byte2 + ((int)reg & 7));
}
void XEmitter::CWD(int bits)
{
if (bits == 16)
Write8(0x66);
Rex(bits == 64, 0, 0, 0);
Write8(0x99);
}
void XEmitter::CBW(int bits)
{
if (bits == 8)
Write8(0x66);
Rex(bits == 32, 0, 0, 0);
Write8(0x98);
}
// Simple opcodes
// push/pop do not need wide to be 64-bit
void XEmitter::PUSH(X64Reg reg)
{
WriteSimple1Byte(32, 0x50, reg);
}
void XEmitter::POP(X64Reg reg)
{
WriteSimple1Byte(32, 0x58, reg);
}
void XEmitter::PUSH(int bits, const OpArg& reg)
{
if (reg.IsSimpleReg())
PUSH(reg.GetSimpleReg());
else if (reg.IsImm())
{
switch (reg.GetImmBits())
{
case 8:
Write8(0x6A);
Write8((u8)(s8)reg.offset);
break;
case 16:
Write8(0x66);
Write8(0x68);
Write16((u16)(s16)(s32)reg.offset);
break;
case 32:
Write8(0x68);
Write32((u32)reg.offset);
break;
default:
ASSERT_MSG(DYNA_REC, 0, "PUSH - Bad imm bits");
break;
}
}
else
{
if (bits == 16)
Write8(0x66);
reg.WriteREX(this, bits, bits);
Write8(0xFF);
reg.WriteRest(this, 0, (X64Reg)6);
}
}
void XEmitter::POP(int /*bits*/, const OpArg& reg)
{
if (reg.IsSimpleReg())
POP(reg.GetSimpleReg());
else
ASSERT_MSG(DYNA_REC, 0, "POP - Unsupported encoding");
}
void XEmitter::BSWAP(int bits, X64Reg reg)
{
if (bits >= 32)
{
WriteSimple2Byte(bits, 0x0F, 0xC8, reg);
}
else if (bits == 16)
{
ROL(16, R(reg), Imm8(8));
}
else if (bits == 8)
{
// Do nothing - can't bswap a single byte...
}
else
{
ASSERT_MSG(DYNA_REC, 0, "BSWAP - Wrong number of bits");
}
}
// Undefined opcode - reserved
// If we ever need a way to always cause a non-breakpoint hard exception...
void XEmitter::UD2()
{
Write8(0x0F);
Write8(0x0B);
}
void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg)
{
ASSERT_MSG(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument");
arg.operandReg = (u8)level;
arg.WriteREX(this, 0, 0);
Write8(0x0F);
Write8(0x18);
arg.WriteRest(this);
}
void XEmitter::SETcc(CCFlags flag, OpArg dest)
{
ASSERT_MSG(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument");
dest.operandReg = 0;
dest.WriteREX(this, 0, 8);
Write8(0x0F);
Write8(0x90 + (u8)flag);
dest.WriteRest(this);
}
void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument");
ASSERT_MSG(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported");
if (bits == 16)
Write8(0x66);
src.operandReg = dest;
src.WriteREX(this, bits, bits);
Write8(0x0F);
Write8(0x40 + (u8)flag);
src.WriteRest(this);
}
void XEmitter::WriteMulDivType(int bits, OpArg src, int ext)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument");
CheckFlags();
src.operandReg = ext;
if (bits == 16)
Write8(0x66);
src.WriteREX(this, bits, bits, 0);
if (bits == 8)
{
Write8(0xF6);
}
else
{
Write8(0xF7);
}
src.WriteRest(this);
}
void XEmitter::MUL(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 4);
}
void XEmitter::DIV(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 6);
}
void XEmitter::IMUL(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 5);
}
void XEmitter::IDIV(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 7);
}
void XEmitter::NEG(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 3);
}
void XEmitter::NOT(int bits, const OpArg& src)
{
WriteMulDivType(bits, src, 2);
}
void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument");
CheckFlags();
src.operandReg = (u8)dest;
if (bits == 16)
Write8(0x66);
if (rep)
Write8(0xF3);
src.WriteREX(this, bits, bits);
Write8(0x0F);
Write8(byte2);
src.WriteRest(this);
}
void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src)
{
if (bits <= 16)
ASSERT_MSG(DYNA_REC, 0, "MOVNTI - bits<=16");
WriteBitSearchType(bits, src, dest, 0xC3);
}
void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src)
{
WriteBitSearchType(bits, dest, src, 0xBC);
} // Bottom bit to top bit
void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src)
{
WriteBitSearchType(bits, dest, src, 0xBD);
} // Top bit to bottom bit
void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src)
{
CheckFlags();
if (!cpu_info.bBMI1)
PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBC, true);
}
void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src)
{
CheckFlags();
if (!cpu_info.bLZCNT)
PanicAlert("Trying to use LZCNT on a system that doesn't support it. Bad programmer.");
WriteBitSearchType(bits, dest, src, 0xBD, true);
}
void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument");
if (dbits == sbits)
{
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16)
Write8(0x66);
src.WriteREX(this, dbits, sbits);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xBE);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xBF);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x63);
}
else
{
Crash();
}
src.WriteRest(this);
}
void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument");
if (dbits == sbits)
{
MOV(dbits, R(dest), src);
return;
}
src.operandReg = (u8)dest;
if (dbits == 16)
Write8(0x66);
// the 32bit result is automatically zero extended to 64bit
src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits);
if (sbits == 8)
{
Write8(0x0F);
Write8(0xB6);
}
else if (sbits == 16)
{
Write8(0x0F);
Write8(0xB7);
}
else if (sbits == 32 && dbits == 64)
{
Write8(0x8B);
}
else
{
ASSERT_MSG(DYNA_REC, 0, "MOVZX - Invalid size");
}
src.WriteRest(this);
}
void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg)
{
ASSERT_MSG(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it.");
if (bits == 8)
{
MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg);
return;
}
if (bits == 16)
Write8(0x66);
ASSERT_MSG(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!");
arg.WriteREX(this, bits, bits, reg);
Write8(0x0F);
Write8(0x38);
Write8(op);
arg.WriteRest(this, 0, reg);
}
void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src)
{
WriteMOVBE(bits, 0xF0, dest, src);
}
void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src)
{
WriteMOVBE(bits, 0xF1, src, dest);
}
void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend, MovInfo* info)
{
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = false;
}
switch (size)
{
case 8:
if (sign_extend)
MOVSX(32, 8, dst, src);
else
MOVZX(32, 8, dst, src);
break;
case 16:
MOVZX(32, 16, dst, src);
if (sign_extend)
{
BSWAP(32, dst);
SAR(32, R(dst), Imm8(16));
}
else
{
ROL(16, R(dst), Imm8(8));
}
break;
case 32:
case 64:
if (cpu_info.bMOVBE)
{
MOVBE(size, dst, src);
}
else
{
MOV(size, R(dst), src);
BSWAP(size, dst);
}
break;
}
}
void XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info)
{
if (cpu_info.bMOVBE)
{
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = false;
}
MOVBE(size, dst, src);
}
else
{
BSWAP(size, src);
if (info)
{
info->address = GetWritableCodePtr();
info->nonAtomicSwapStore = true;
info->nonAtomicSwapStoreSrc = src;
}
MOV(size, dst, R(src));
}
}
void XEmitter::LEA(int bits, X64Reg dest, OpArg src)
{
ASSERT_MSG(DYNA_REC, !src.IsImm(), "LEA - Imm argument");
src.operandReg = (u8)dest;
if (bits == 16)
Write8(0x66); // TODO: performance warning
src.WriteREX(this, bits, bits);
Write8(0x8D);
src.WriteRest(this, 0, INVALID_REG, bits == 64);
}
// shift can be either imm8 or cl
void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext)
{
CheckFlags();
bool writeImm = false;
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "WriteShift - can't shift imms");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
(shift.IsImm() && shift.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "WriteShift - illegal argument");
}
dest.operandReg = ext;
if (bits == 16)
Write8(0x66);
dest.WriteREX(this, bits, bits, 0);
if (shift.GetImmBits() == 8)
{
// ok an imm
u8 imm = (u8)shift.offset;
if (imm == 1)
{
Write8(bits == 8 ? 0xD0 : 0xD1);
}
else
{
writeImm = true;
Write8(bits == 8 ? 0xC0 : 0xC1);
}
}
else
{
Write8(bits == 8 ? 0xD2 : 0xD3);
}
dest.WriteRest(this, writeImm ? 1 : 0);
if (writeImm)
Write8((u8)shift.offset);
}
// large rotates and shift are slower on Intel than AMD
// Intel likes to rotate by 1, and the op is smaller too
void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 0);
}
void XEmitter::ROR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 1);
}
void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 2);
}
void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 3);
}
void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 4);
}
void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 5);
}
void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift)
{
WriteShift(bits, dest, shift, 7);
}
// index can be either imm8 or register, don't use memory destination because it's slow
void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext)
{
CheckFlags();
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - can't test imms");
}
if ((index.IsImm() && index.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - illegal argument");
}
if (bits == 16)
Write8(0x66);
if (index.IsImm())
{
dest.WriteREX(this, bits, bits);
Write8(0x0F);
Write8(0xBA);
dest.WriteRest(this, 1, (X64Reg)ext);
Write8((u8)index.offset);
}
else
{
X64Reg operand = index.GetSimpleReg();
dest.WriteREX(this, bits, bits, operand);
Write8(0x0F);
Write8(0x83 + 8 * ext);
dest.WriteRest(this, 1, operand);
}
}
void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 4);
}
void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 5);
}
void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 6);
}
void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index)
{
WriteBitTest(bits, dest, index, 7);
}
// shift can be either imm8 or cl
void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
CheckFlags();
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "SHRD - can't use imms as destination");
}
if (!src.IsSimpleReg())
{
ASSERT_MSG(DYNA_REC, 0, "SHRD - must use simple register as source");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
(shift.IsImm() && shift.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "SHRD - illegal shift");
}
if (bits == 16)
Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteREX(this, bits, bits, operand);
if (shift.GetImmBits() == 8)
{
Write8(0x0F);
Write8(0xAC);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
}
else
{
Write8(0x0F);
Write8(0xAD);
dest.WriteRest(this, 0, operand);
}
}
void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift)
{
CheckFlags();
if (dest.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "SHLD - can't use imms as destination");
}
if (!src.IsSimpleReg())
{
ASSERT_MSG(DYNA_REC, 0, "SHLD - must use simple register as source");
}
if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) ||
(shift.IsImm() && shift.GetImmBits() != 8))
{
ASSERT_MSG(DYNA_REC, 0, "SHLD - illegal shift");
}
if (bits == 16)
Write8(0x66);
X64Reg operand = src.GetSimpleReg();
dest.WriteREX(this, bits, bits, operand);
if (shift.GetImmBits() == 8)
{
Write8(0x0F);
Write8(0xA4);
dest.WriteRest(this, 1, operand);
Write8((u8)shift.offset);
}
else
{
Write8(0x0F);
Write8(0xA5);
dest.WriteRest(this, 0, operand);
}
}
void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits)
{
if (bits == 16)
emit->Write8(0x66);
this->operandReg = (u8)_operandReg;
WriteREX(emit, bits, bits);
emit->Write8(op);
WriteRest(emit);
}
// operand can either be immediate or register
void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand,
int bits) const
{
X64Reg _operandReg;
if (IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order");
}
if (bits == 16)
emit->Write8(0x66);
int immToWrite = 0;
if (operand.IsImm())
{
WriteREX(emit, bits, bits);
if (!toRM)
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)");
}
if (operand.scale == SCALE_IMM8 && bits == 8)
{
// op al, imm8
if (!scale && offsetOrBaseReg == AL && normalops[op].eaximm8 != 0xCC)
{
emit->Write8(normalops[op].eaximm8);
emit->Write8((u8)operand.offset);
return;
}
// mov reg, imm8
if (!scale && op == nrmMOV)
{
emit->Write8(0xB0 + (offsetOrBaseReg & 7));
emit->Write8((u8)operand.offset);
return;
}
// op r/m8, imm8
emit->Write8(normalops[op].imm8);
immToWrite = 8;
}
else if ((operand.scale == SCALE_IMM16 && bits == 16) ||
(operand.scale == SCALE_IMM32 && bits == 32) ||
(operand.scale == SCALE_IMM32 && bits == 64))
{
// Try to save immediate size if we can, but first check to see
// if the instruction supports simm8.
// op r/m, imm8
if (normalops[op].simm8 != 0xCC &&
((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) ||
(operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset)))
{
emit->Write8(normalops[op].simm8);
immToWrite = 8;
}
else
{
// mov reg, imm
if (!scale && op == nrmMOV && bits != 64)
{
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
if (bits == 16)
emit->Write16((u16)operand.offset);
else
emit->Write32((u32)operand.offset);
return;
}
// op eax, imm
if (!scale && offsetOrBaseReg == EAX && normalops[op].eaximm32 != 0xCC)
{
emit->Write8(normalops[op].eaximm32);
if (bits == 16)
emit->Write16((u16)operand.offset);
else
emit->Write32((u32)operand.offset);
return;
}
// op r/m, imm
emit->Write8(normalops[op].imm32);
immToWrite = bits == 16 ? 16 : 32;
}
}
else if ((operand.scale == SCALE_IMM8 && bits == 16) ||
(operand.scale == SCALE_IMM8 && bits == 32) ||
(operand.scale == SCALE_IMM8 && bits == 64))
{
// op r/m, imm8
emit->Write8(normalops[op].simm8);
immToWrite = 8;
}
else if (operand.scale == SCALE_IMM64 && bits == 64)
{
if (scale)
{
ASSERT_MSG(DYNA_REC, 0,
"WriteNormalOp - MOV with 64-bit imm requires register destination");
}
// mov reg64, imm64
else if (op == nrmMOV)
{
emit->Write8(0xB8 + (offsetOrBaseReg & 7));
emit->Write64((u64)operand.offset);
return;
}
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm");
}
else
{
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case %d %d", operand.scale, bits);
}
_operandReg = (X64Reg)normalops[op].ext; // pass extension in REG of ModRM
}
else
{
_operandReg = (X64Reg)operand.offsetOrBaseReg;
WriteREX(emit, bits, bits, _operandReg);
// op r/m, reg
if (toRM)
{
emit->Write8(bits == 8 ? normalops[op].toRm8 : normalops[op].toRm32);
}
// op reg, r/m
else
{
emit->Write8(bits == 8 ? normalops[op].fromRm8 : normalops[op].fromRm32);
}
}
WriteRest(emit, immToWrite >> 3, _operandReg);
switch (immToWrite)
{
case 0:
break;
case 8:
emit->Write8((u8)operand.offset);
break;
case 16:
emit->Write16((u16)operand.offset);
break;
case 32:
emit->Write32((u32)operand.offset);
break;
default:
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case");
}
}
void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2)
{
if (a1.IsImm())
{
// Booh! Can't write to an imm
ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm");
return;
}
if (a2.IsImm())
{
a1.WriteNormalOp(this, true, op, a2, bits);
}
else
{
if (a1.IsSimpleReg())
{
a2.WriteNormalOp(this, false, op, a1, bits);
}
else
{
ASSERT_MSG(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(),
"WriteNormalOp - a1 and a2 cannot both be memory");
a1.WriteNormalOp(this, true, op, a2, bits);
}
}
}
void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmADD, a1, a2);
}
void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmADC, a1, a2);
}
void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmSUB, a1, a2);
}
void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmSBB, a1, a2);
}
void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmAND, a1, a2);
}
void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmOR, a1, a2);
}
void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmXOR, a1, a2);
}
void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2)
{
if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg())
ERROR_LOG(DYNA_REC, "Redundant MOV @ %p - bug in JIT?", code);
WriteNormalOp(bits, nrmMOV, a1, a2);
}
void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmTEST, a1, a2);
}
void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
WriteNormalOp(bits, nrmCMP, a1, a2);
}
void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2)
{
WriteNormalOp(bits, nrmXCHG, a1, a2);
}
void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
if (a1.IsSimpleReg() && a2.IsImm() &&
a2.offset == 0) // turn 'CMP reg, 0' into shorter 'TEST reg, reg'
{
WriteNormalOp(bits, nrmTEST, a1, a1);
}
else
{
WriteNormalOp(bits, nrmCMP, a1, a2);
}
}
void XEmitter::MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2)
{
// This stomps on flags, so ensure they aren't locked
DEBUG_ASSERT(!flags_locked);
// Zero shortcuts (note that this can generate no code in the case where a1 == dest && a2 == zero
// or a2 == dest && a1 == zero)
if (a1.IsZero())
{
if (!a2.IsSimpleReg() || a2.GetSimpleReg() != dest)
{
MOV(bits, R(dest), a2);
}
return;
}
if (a2.IsZero())
{
if (!a1.IsSimpleReg() || a1.GetSimpleReg() != dest)
{
MOV(bits, R(dest), a1);
}
return;
}
// If dest == a1 or dest == a2 we can simplify this
if (a1.IsSimpleReg() && a1.GetSimpleReg() == dest)
{
ADD(bits, R(dest), a2);
return;
}
if (a2.IsSimpleReg() && a2.GetSimpleReg() == dest)
{
ADD(bits, R(dest), a1);
return;
}
// TODO: 32-bit optimizations may apply to other bit sizes (confirm)
if (bits == 32)
{
if (a1.IsImm() && a2.IsImm())
{
MOV(32, R(dest), Imm32(a1.Imm32() + a2.Imm32()));
return;
}
if (a1.IsSimpleReg() && a2.IsSimpleReg())
{
LEA(32, dest, MRegSum(a1.GetSimpleReg(), a2.GetSimpleReg()));
return;
}
if (a1.IsSimpleReg() && a2.IsImm())
{
LEA(32, dest, MDisp(a1.GetSimpleReg(), a2.Imm32()));
return;
}
if (a1.IsImm() && a2.IsSimpleReg())
{
LEA(32, dest, MDisp(a2.GetSimpleReg(), a1.Imm32()));
return;
}
}
// Fallback
MOV(bits, R(dest), a1);
ADD(bits, R(dest), a2);
}
void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2)
{
CheckFlags();
if (bits == 8)
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a1.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - second arg cannot be imm!");
return;
}
if (!a2.IsImm())
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - third arg must be imm!");
return;
}
if (bits == 16)
Write8(0x66);
a1.WriteREX(this, bits, bits, regOp);
if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) ||
(a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset))
{
Write8(0x6B);
a1.WriteRest(this, 1, regOp);
Write8((u8)a2.offset);
}
else
{
Write8(0x69);
if (a2.GetImmBits() == 16 && bits == 16)
{
a1.WriteRest(this, 2, regOp);
Write16((u16)a2.offset);
}
else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64))
{
a1.WriteRest(this, 4, regOp);
Write32((u32)a2.offset);
}
else
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - unhandled case!");
}
}
}
void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a)
{
CheckFlags();
if (bits == 8)
{
ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!");
return;
}
if (a.IsImm())
{
IMUL(bits, regOp, R(regOp), a);
return;
}
if (bits == 16)
Write8(0x66);
a.WriteREX(this, bits, bits, regOp);
Write8(0x0F);
Write8(0xAF);
a.WriteRest(this, 0, regOp);
}
void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes)
{
if (opPrefix)
Write8(opPrefix);
arg.operandReg = regOp;
arg.WriteREX(this, 0, 0);
Write8(0x0F);
if (op > 0xFF)
Write8((op >> 8) & 0xFF);
Write8(op & 0xFF);
arg.WriteRest(this, extrabytes);
}
static int GetVEXmmmmm(u16 op)
{
// Currently, only 0x38 and 0x3A are used as secondary escape byte.
if ((op >> 8) == 0x3A)
return 3;
else if ((op >> 8) == 0x38)
return 2;
else
return 1;
}
static int GetVEXpp(u8 opPrefix)
{
if (opPrefix == 0x66)
return 1;
else if (opPrefix == 0xF3)
return 2;
else if (opPrefix == 0xF2)
return 3;
else
return 0;
}
void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int W, int extrabytes)
{
int mmmmm = GetVEXmmmmm(op);
int pp = GetVEXpp(opPrefix);
// FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here
arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W);
Write8(op & 0xFF);
arg.WriteRest(this, extrabytes, regOp1);
}
void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
X64Reg regOp3, int W)
{
WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1);
Write8((u8)regOp3 << 4);
}
void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int W, int extrabytes)
{
if (!cpu_info.bAVX)
PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer.");
WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
}
void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
X64Reg regOp3, int W)
{
if (!cpu_info.bAVX)
PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer.");
WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W);
}
void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W)
{
if (!cpu_info.bFMA)
PanicAlert("Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd.");
WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W);
}
void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg,
int W)
{
if (!cpu_info.bFMA4)
PanicAlert("Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd.");
WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W);
}
void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
const OpArg& arg, int extrabytes)
{
if (arg.IsImm())
PanicAlert("BMI1/2 instructions don't support immediate operands.");
if (size != 32 && size != 64)
PanicAlert("BMI1/2 instructions only support 32-bit and 64-bit modes!");
int W = size == 64;
WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes);
}
void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
const OpArg& arg, int extrabytes)
{
CheckFlags();
if (!cpu_info.bBMI1)
PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer.");
WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2,
const OpArg& arg, int extrabytes)
{
if (!cpu_info.bBMI2)
PanicAlert("Trying to use BMI2 on a system that doesn't support it. Bad programmer.");
WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes);
}
void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x6E, dest, arg, 0);
}
void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src)
{
WriteSSEOp(0x66, 0x7E, src, arg, 0);
}
void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg)
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = dest;
Write8(0x66);
arg.WriteREX(this, 64, 0);
Write8(0x0f);
Write8(0x6E);
arg.WriteRest(this, 0);
}
void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src)
{
if (src > 7 || arg.IsSimpleReg())
{
// Alternate encoding
// This does not display correctly in MSVC's debugger, it thinks it's a MOVD
arg.operandReg = src;
Write8(0x66);
arg.WriteREX(this, 64, 0);
Write8(0x0f);
Write8(0x7E);
arg.WriteRest(this, 0);
}
else
{
arg.operandReg = src;
arg.WriteREX(this, 0, 0);
Write8(0x66);
Write8(0x0f);
Write8(0xD6);
arg.WriteRest(this, 0);
}
}
void XEmitter::WriteMXCSR(OpArg arg, int ext)
{
if (arg.IsImm() || arg.IsSimpleReg())
ASSERT_MSG(DYNA_REC, 0, "MXCSR - invalid operand");
arg.operandReg = ext;
arg.WriteREX(this, 0, 0);
Write8(0x0F);
Write8(0xAE);
arg.WriteRest(this);
}
void XEmitter::STMXCSR(const OpArg& memloc)
{
WriteMXCSR(memloc, 3);
}
void XEmitter::LDMXCSR(const OpArg& memloc)
{
WriteMXCSR(memloc, 2);
}
void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg);
}
void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVNTP, regOp, arg);
}
void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVNTP, regOp, arg);
}
void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseADD, regOp, arg);
}
void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseADD, regOp, arg);
}
void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseSUB, regOp, arg);
}
void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseSUB, regOp, arg);
}
void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0xF3, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0xF2, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::MULSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMUL, regOp, arg);
}
void XEmitter::MULSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMUL, regOp, arg);
}
void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseDIV, regOp, arg);
}
void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseDIV, regOp, arg);
}
void XEmitter::MINSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMIN, regOp, arg);
}
void XEmitter::MINSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMIN, regOp, arg);
}
void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMAX, regOp, arg);
}
void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMAX, regOp, arg);
}
void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseSQRT, regOp, arg);
}
void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseSQRT, regOp, arg);
}
void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseRCP, regOp, arg);
}
void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseRSQRT, regOp, arg);
}
void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseADD, regOp, arg);
}
void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseADD, regOp, arg);
}
void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseSUB, regOp, arg);
}
void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseSUB, regOp, arg);
}
void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0x00, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare)
{
WriteSSEOp(0x66, sseCMP, regOp, arg, 1);
Write8(compare);
}
void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseAND, regOp, arg);
}
void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseAND, regOp, arg);
}
void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseANDN, regOp, arg);
}
void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseANDN, regOp, arg);
}
void XEmitter::ORPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseOR, regOp, arg);
}
void XEmitter::ORPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseOR, regOp, arg);
}
void XEmitter::XORPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseXOR, regOp, arg);
}
void XEmitter::XORPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseXOR, regOp, arg);
}
void XEmitter::MULPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMUL, regOp, arg);
}
void XEmitter::MULPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMUL, regOp, arg);
}
void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseDIV, regOp, arg);
}
void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseDIV, regOp, arg);
}
void XEmitter::MINPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMIN, regOp, arg);
}
void XEmitter::MINPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMIN, regOp, arg);
}
void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMAX, regOp, arg);
}
void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMAX, regOp, arg);
}
void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseSQRT, regOp, arg);
}
void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseSQRT, regOp, arg);
}
void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseRCP, regOp, arg);
}
void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseRSQRT, regOp, arg);
}
void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0x00, sseSHUF, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0x66, sseSHUF, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::COMISS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseCOMIS, regOp, arg);
} // weird that these should be packed
void XEmitter::COMISD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseCOMIS, regOp, arg);
} // ordered
void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseUCOMIS, regOp, arg);
} // unordered
void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseUCOMIS, regOp, arg);
}
void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg);
}
void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg);
}
void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg);
}
void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg);
}
void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg);
}
void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg);
}
void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg);
}
void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg);
}
void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg);
}
void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg);
}
void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg);
}
void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg);
}
void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg);
}
void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg);
}
void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg);
}
void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg);
}
void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg);
}
void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp)
{
WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg);
}
void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2)
{
WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2));
}
void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2)
{
WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2));
}
void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, 0x5A, regOp, arg);
}
void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, 0x5A, regOp, arg);
}
void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x5A, regOp, arg);
}
void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x5A, regOp, arg);
}
void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x2D, regOp, arg);
}
void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x2D, regOp, arg);
}
void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x2A, regOp, arg);
}
void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x2A, regOp, arg);
}
void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0xE6, regOp, arg);
}
void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x00, 0x5B, regOp, arg);
}
void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0xE6, regOp, arg);
}
void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, 0x5B, regOp, arg);
}
void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF2, 0x2C, regOp, arg);
}
void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x2C, regOp, arg);
}
void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0xF3, 0x5B, regOp, arg);
}
void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE6, regOp, arg);
}
void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src)
{
WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src));
}
void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x00, 0x50, dest, arg);
}
void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x50, dest, arg);
}
void XEmitter::LDDQU(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0xF2, sseLDDQU, dest, arg);
} // For integer data only
void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x00, 0x14, dest, arg);
}
void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x00, 0x15, dest, arg);
}
void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x14, dest, arg);
}
void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x15, dest, arg);
}
// Pretty much every x86 CPU nowadays supports SSE3,
// but the SSE2 fallbacks are easy.
void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(0xF3, 0x12, regOp, arg);
}
else
{
if (!arg.IsSimpleReg(regOp))
MOVAPD(regOp, arg);
UNPCKLPS(regOp, R(regOp));
}
}
void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(0xF3, 0x16, regOp, arg);
}
else
{
if (!arg.IsSimpleReg(regOp))
MOVAPD(regOp, arg);
UNPCKHPS(regOp, R(regOp));
}
}
void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg)
{
if (cpu_info.bSSE3)
{
WriteSSEOp(0xF2, 0x12, regOp, arg);
}
else
{
if (!arg.IsSimpleReg(regOp))
MOVSD(regOp, arg);
UNPCKLPD(regOp, R(regOp));
}
}
// There are a few more left
// Also some integer instructions are missing
void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x6B, dest, arg);
}
void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x63, dest, arg);
}
void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x67, dest, arg);
}
void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x60, dest, arg);
}
void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x61, dest, arg);
}
void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x62, dest, arg);
}
void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x6C, dest, arg);
}
void XEmitter::PSRLW(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLD(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg));
Write8(shift);
}
void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg)
{
WriteSSEOp(0x66, 0xd3, reg, arg);
}
void XEmitter::PSRLDQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg));
Write8(shift);
}
void XEmitter::PSLLW(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLD(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg));
Write8(shift);
}
void XEmitter::PSLLDQ(X64Reg reg, int shift)
{
WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg));
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAW(X64Reg reg, int shift)
{
if (reg > 7)
PanicAlert("The PSRAW-emitter does not support regs above 7");
Write8(0x66);
Write8(0x0f);
Write8(0x71);
Write8(0xE0 | reg);
Write8(shift);
}
// WARNING not REX compatible
void XEmitter::PSRAD(X64Reg reg, int shift)
{
if (reg > 7)
PanicAlert("The PSRAD-emitter does not support regs above 7");
Write8(0x66);
Write8(0x0f);
Write8(0x72);
Write8(0xE0 | reg);
Write8(shift);
}
void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
if (!cpu_info.bSSSE3)
PanicAlert("Trying to use SSSE3 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes)
{
if (!cpu_info.bSSE4_1)
PanicAlert("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer.");
WriteSSEOp(opPrefix, op, regOp, arg, extrabytes);
}
void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg)
{
WriteSSSE3Op(0x66, 0x3800, dest, arg);
}
void XEmitter::PTEST(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3817, dest, arg);
}
void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x382b, dest, arg);
}
void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3820, dest, arg);
}
void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3821, dest, arg);
}
void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3822, dest, arg);
}
void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3823, dest, arg);
}
void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3824, dest, arg);
}
void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3825, dest, arg);
}
void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3830, dest, arg);
}
void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3831, dest, arg);
}
void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3832, dest, arg);
}
void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3833, dest, arg);
}
void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3834, dest, arg);
}
void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3835, dest, arg);
}
void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3810, dest, arg);
}
void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3814, dest, arg);
}
void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg)
{
WriteSSE41Op(0x66, 0x3815, dest, arg);
}
void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend)
{
WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1);
Write8(blend);
}
void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend)
{
WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1);
Write8(blend);
}
void XEmitter::PAND(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDB, dest, arg);
}
void XEmitter::PANDN(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDF, dest, arg);
}
void XEmitter::PXOR(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEF, dest, arg);
}
void XEmitter::POR(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEB, dest, arg);
}
void XEmitter::PADDB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFC, dest, arg);
}
void XEmitter::PADDW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFD, dest, arg);
}
void XEmitter::PADDD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFE, dest, arg);
}
void XEmitter::PADDQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD4, dest, arg);
}
void XEmitter::PADDSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEC, dest, arg);
}
void XEmitter::PADDSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xED, dest, arg);
}
void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDC, dest, arg);
}
void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDD, dest, arg);
}
void XEmitter::PSUBB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF8, dest, arg);
}
void XEmitter::PSUBW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF9, dest, arg);
}
void XEmitter::PSUBD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFA, dest, arg);
}
void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xFB, dest, arg);
}
void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE8, dest, arg);
}
void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE9, dest, arg);
}
void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD8, dest, arg);
}
void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD9, dest, arg);
}
void XEmitter::PAVGB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE0, dest, arg);
}
void XEmitter::PAVGW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xE3, dest, arg);
}
void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x74, dest, arg);
}
void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x75, dest, arg);
}
void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x76, dest, arg);
}
void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x64, dest, arg);
}
void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x65, dest, arg);
}
void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0x66, dest, arg);
}
void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg)
{
WriteSSEOp(0x66, 0xC5, dest, arg);
Write8(subreg);
}
void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg)
{
WriteSSEOp(0x66, 0xC4, dest, arg);
Write8(subreg);
}
void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg)
{
WriteSSE41Op(0x66, 0x3A22, dest, arg);
Write8(subreg);
}
void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF5, dest, arg);
}
void XEmitter::PSADBW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xF6, dest, arg);
}
void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEE, dest, arg);
}
void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDE, dest, arg);
}
void XEmitter::PMINSW(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xEA, dest, arg);
}
void XEmitter::PMINUB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xDA, dest, arg);
}
void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg)
{
WriteSSEOp(0x66, 0xD7, dest, arg);
}
void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0x66, 0x70, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0xF2, 0x70, regOp, arg, 1);
Write8(shuffle);
}
void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle)
{
WriteSSEOp(0xF3, 0x70, regOp, arg, 1);
Write8(shuffle);
}
// VEX
void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg);
}
void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg);
}
void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg);
}
void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg);
}
void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg);
}
void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg);
}
void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg);
}
void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg);
}
void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg);
}
void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare)
{
WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1);
Write8(compare);
}
void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle)
{
WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1);
Write8(shuffle);
}
void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg);
}
void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg);
}
void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3)
{
WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3);
}
void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg);
}
void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg);
}
void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg);
}
void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg);
}
void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg);
}
void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg);
}
void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg);
}
void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg);
}
void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg);
}
void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg);
}
void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg);
}
void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg);
}
void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x98, regOp1, regOp2, arg);
}
void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA8, regOp1, regOp2, arg);
}
void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB8, regOp1, regOp2, arg);
}
void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x98, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x99, regOp1, regOp2, arg);
}
void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA9, regOp1, regOp2, arg);
}
void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB9, regOp1, regOp2, arg);
}
void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x99, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9A, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAA, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBA, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9B, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAB, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBB, regOp1, regOp2, arg);
}
void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9C, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAC, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBC, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9D, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAD, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBD, regOp1, regOp2, arg);
}
void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9E, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAE, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBE, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9F, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAF, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBF, regOp1, regOp2, arg);
}
void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1);
}
void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x96, regOp1, regOp2, arg);
}
void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA6, regOp1, regOp2, arg);
}
void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB6, regOp1, regOp2, arg);
}
void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x96, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x97, regOp1, regOp2, arg);
}
void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA7, regOp1, regOp2, arg);
}
void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB7, regOp1, regOp2, arg);
}
void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0x97, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1);
}
void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1);
}
#define FMA4(name, op) \
void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) \
{ \
WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1); \
} \
void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) \
{ \
WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0); \
}
FMA4(VFMADDSUBPS, 0x5C)
FMA4(VFMADDSUBPD, 0x5D)
FMA4(VFMSUBADDPS, 0x5E)
FMA4(VFMSUBADDPD, 0x5F)
FMA4(VFMADDPS, 0x68)
FMA4(VFMADDPD, 0x69)
FMA4(VFMADDSS, 0x6A)
FMA4(VFMADDSD, 0x6B)
FMA4(VFMSUBPS, 0x6C)
FMA4(VFMSUBPD, 0x6D)
FMA4(VFMSUBSS, 0x6E)
FMA4(VFMSUBSD, 0x6F)
FMA4(VFNMADDPS, 0x78)
FMA4(VFNMADDPD, 0x79)
FMA4(VFNMADDSS, 0x7A)
FMA4(VFNMADDSD, 0x7B)
FMA4(VFNMSUBPS, 0x7C)
FMA4(VFNMSUBPD, 0x7D)
FMA4(VFNMSUBSS, 0x7E)
FMA4(VFNMSUBSD, 0x7F)
#undef FMA4
void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate)
{
WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1);
Write8(rotate);
}
void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg);
}
void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg);
}
void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg);
}
void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
CheckFlags();
WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg);
}
void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg);
}
void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg);
}
void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg);
}
void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2)
{
WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg);
}
void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg)
{
WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg);
}
// Prefixes
void XEmitter::LOCK()
{
Write8(0xF0);
}
void XEmitter::REP()
{
Write8(0xF3);
}
void XEmitter::REPNE()
{
Write8(0xF2);
}
void XEmitter::FSOverride()
{
Write8(0x64);
}
void XEmitter::GSOverride()
{
Write8(0x65);
}
void XEmitter::FWAIT()
{
Write8(0x9B);
}
// TODO: make this more generic
void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg)
{
int mf = 0;
ASSERT_MSG(DYNA_REC, !(bits == 80 && op_80b == floatINVALID),
"WriteFloatLoadStore: 80 bits not supported for this instruction");
switch (bits)
{
case 32:
mf = 0;
break;
case 64:
mf = 4;
break;
case 80:
mf = 2;
break;
default:
ASSERT_MSG(DYNA_REC, 0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)");
}
Write8(0xd9 | mf);
// x87 instructions use the reg field of the ModR/M byte as opcode:
if (bits == 80)
op = op_80b;
arg.WriteRest(this, 0, (X64Reg)op);
}
void XEmitter::FLD(int bits, const OpArg& src)
{
WriteFloatLoadStore(bits, floatLD, floatLD80, src);
}
void XEmitter::FST(int bits, const OpArg& dest)
{
WriteFloatLoadStore(bits, floatST, floatINVALID, dest);
}
void XEmitter::FSTP(int bits, const OpArg& dest)
{
WriteFloatLoadStore(bits, floatSTP, floatSTP80, dest);
}
void XEmitter::FNSTSW_AX()
{
Write8(0xDF);
Write8(0xE0);
}
void XEmitter::RDTSC()
{
Write8(0x0F);
Write8(0x31);
}
}