mirror of
https://github.com/dolphin-emu/dolphin.git
synced 2025-01-03 22:31:22 +01:00
c6678687b0
Gets rid of magic numbers in cases where the array size is known at compile time. This is also useful for future entries that are stack allocated arrays as these functions prevent incorrect sizes being provided.
840 lines
26 KiB
C++
840 lines
26 KiB
C++
// Copyright 2009 Dolphin Emulator Project
|
|
// Licensed under GPLv2+
|
|
// Refer to the license.txt file included.
|
|
|
|
#include <cmath>
|
|
|
|
#include "Common/ChunkFile.h"
|
|
#include "Common/CommonTypes.h"
|
|
#include "VideoBackends/Software/DebugUtil.h"
|
|
#include "VideoBackends/Software/EfbInterface.h"
|
|
#include "VideoBackends/Software/SWStatistics.h"
|
|
#include "VideoBackends/Software/SWVideoConfig.h"
|
|
#include "VideoBackends/Software/Tev.h"
|
|
#include "VideoBackends/Software/TextureSampler.h"
|
|
#include "VideoBackends/Software/XFMemLoader.h"
|
|
#include "VideoCommon/BoundingBox.h"
|
|
|
|
#ifdef _DEBUG
|
|
#define ALLOW_TEV_DUMPS 1
|
|
#else
|
|
#define ALLOW_TEV_DUMPS 0
|
|
#endif
|
|
|
|
void Tev::Init()
|
|
{
|
|
FixedConstants[0] = 0;
|
|
FixedConstants[1] = 32;
|
|
FixedConstants[2] = 64;
|
|
FixedConstants[3] = 96;
|
|
FixedConstants[4] = 128;
|
|
FixedConstants[5] = 159;
|
|
FixedConstants[6] = 191;
|
|
FixedConstants[7] = 223;
|
|
FixedConstants[8] = 255;
|
|
|
|
for (s16& comp : Zero16)
|
|
{
|
|
comp = 0;
|
|
}
|
|
|
|
m_ColorInputLUT[0][RED_INP] = &Reg[0][RED_C]; m_ColorInputLUT[0][GRN_INP] = &Reg[0][GRN_C]; m_ColorInputLUT[0][BLU_INP] = &Reg[0][BLU_C]; // prev.rgb
|
|
m_ColorInputLUT[1][RED_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][GRN_INP] = &Reg[0][ALP_C]; m_ColorInputLUT[1][BLU_INP] = &Reg[0][ALP_C]; // prev.aaa
|
|
m_ColorInputLUT[2][RED_INP] = &Reg[1][RED_C]; m_ColorInputLUT[2][GRN_INP] = &Reg[1][GRN_C]; m_ColorInputLUT[2][BLU_INP] = &Reg[1][BLU_C]; // c0.rgb
|
|
m_ColorInputLUT[3][RED_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][GRN_INP] = &Reg[1][ALP_C]; m_ColorInputLUT[3][BLU_INP] = &Reg[1][ALP_C]; // c0.aaa
|
|
m_ColorInputLUT[4][RED_INP] = &Reg[2][RED_C]; m_ColorInputLUT[4][GRN_INP] = &Reg[2][GRN_C]; m_ColorInputLUT[4][BLU_INP] = &Reg[2][BLU_C]; // c1.rgb
|
|
m_ColorInputLUT[5][RED_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][GRN_INP] = &Reg[2][ALP_C]; m_ColorInputLUT[5][BLU_INP] = &Reg[2][ALP_C]; // c1.aaa
|
|
m_ColorInputLUT[6][RED_INP] = &Reg[3][RED_C]; m_ColorInputLUT[6][GRN_INP] = &Reg[3][GRN_C]; m_ColorInputLUT[6][BLU_INP] = &Reg[3][BLU_C]; // c2.rgb
|
|
m_ColorInputLUT[7][RED_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][GRN_INP] = &Reg[3][ALP_C]; m_ColorInputLUT[7][BLU_INP] = &Reg[3][ALP_C]; // c2.aaa
|
|
m_ColorInputLUT[8][RED_INP] = &TexColor[RED_C]; m_ColorInputLUT[8][GRN_INP] = &TexColor[GRN_C]; m_ColorInputLUT[8][BLU_INP] = &TexColor[BLU_C]; // tex.rgb
|
|
m_ColorInputLUT[9][RED_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][GRN_INP] = &TexColor[ALP_C]; m_ColorInputLUT[9][BLU_INP] = &TexColor[ALP_C]; // tex.aaa
|
|
m_ColorInputLUT[10][RED_INP] = &RasColor[RED_C]; m_ColorInputLUT[10][GRN_INP] = &RasColor[GRN_C]; m_ColorInputLUT[10][BLU_INP] = &RasColor[BLU_C]; // ras.rgb
|
|
m_ColorInputLUT[11][RED_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][GRN_INP] = &RasColor[ALP_C]; m_ColorInputLUT[11][BLU_INP] = &RasColor[ALP_C]; // ras.rgb
|
|
m_ColorInputLUT[12][RED_INP] = &FixedConstants[8]; m_ColorInputLUT[12][GRN_INP] = &FixedConstants[8]; m_ColorInputLUT[12][BLU_INP] = &FixedConstants[8]; // one
|
|
m_ColorInputLUT[13][RED_INP] = &FixedConstants[4]; m_ColorInputLUT[13][GRN_INP] = &FixedConstants[4]; m_ColorInputLUT[13][BLU_INP] = &FixedConstants[4]; // half
|
|
m_ColorInputLUT[14][RED_INP] = &StageKonst[RED_C]; m_ColorInputLUT[14][GRN_INP] = &StageKonst[GRN_C]; m_ColorInputLUT[14][BLU_INP] = &StageKonst[BLU_C]; // konst
|
|
m_ColorInputLUT[15][RED_INP] = &FixedConstants[0]; m_ColorInputLUT[15][GRN_INP] = &FixedConstants[0]; m_ColorInputLUT[15][BLU_INP] = &FixedConstants[0]; // zero
|
|
|
|
m_AlphaInputLUT[0] = &Reg[0][ALP_C]; // prev
|
|
m_AlphaInputLUT[1] = &Reg[1][ALP_C]; // c0
|
|
m_AlphaInputLUT[2] = &Reg[2][ALP_C]; // c1
|
|
m_AlphaInputLUT[3] = &Reg[3][ALP_C]; // c2
|
|
m_AlphaInputLUT[4] = &TexColor[ALP_C]; // tex
|
|
m_AlphaInputLUT[5] = &RasColor[ALP_C]; // ras
|
|
m_AlphaInputLUT[6] = &StageKonst[ALP_C]; // konst
|
|
m_AlphaInputLUT[7] = &Zero16[ALP_C]; // zero
|
|
|
|
for (int comp = 0; comp < 4; comp++)
|
|
{
|
|
m_KonstLUT[0][comp] = &FixedConstants[8];
|
|
m_KonstLUT[1][comp] = &FixedConstants[7];
|
|
m_KonstLUT[2][comp] = &FixedConstants[6];
|
|
m_KonstLUT[3][comp] = &FixedConstants[5];
|
|
m_KonstLUT[4][comp] = &FixedConstants[4];
|
|
m_KonstLUT[5][comp] = &FixedConstants[3];
|
|
m_KonstLUT[6][comp] = &FixedConstants[2];
|
|
m_KonstLUT[7][comp] = &FixedConstants[1];
|
|
|
|
// These are "invalid" values, not meant to be used. On hardware,
|
|
// they all output zero.
|
|
for (int i = 8; i < 16; ++i)
|
|
{
|
|
m_KonstLUT[i][comp] = &FixedConstants[0];
|
|
}
|
|
|
|
if (comp != ALP_C)
|
|
{
|
|
m_KonstLUT[12][comp] = &KonstantColors[0][comp];
|
|
m_KonstLUT[13][comp] = &KonstantColors[1][comp];
|
|
m_KonstLUT[14][comp] = &KonstantColors[2][comp];
|
|
m_KonstLUT[15][comp] = &KonstantColors[3][comp];
|
|
}
|
|
|
|
m_KonstLUT[16][comp] = &KonstantColors[0][RED_C];
|
|
m_KonstLUT[17][comp] = &KonstantColors[1][RED_C];
|
|
m_KonstLUT[18][comp] = &KonstantColors[2][RED_C];
|
|
m_KonstLUT[19][comp] = &KonstantColors[3][RED_C];
|
|
m_KonstLUT[20][comp] = &KonstantColors[0][GRN_C];
|
|
m_KonstLUT[21][comp] = &KonstantColors[1][GRN_C];
|
|
m_KonstLUT[22][comp] = &KonstantColors[2][GRN_C];
|
|
m_KonstLUT[23][comp] = &KonstantColors[3][GRN_C];
|
|
m_KonstLUT[24][comp] = &KonstantColors[0][BLU_C];
|
|
m_KonstLUT[25][comp] = &KonstantColors[1][BLU_C];
|
|
m_KonstLUT[26][comp] = &KonstantColors[2][BLU_C];
|
|
m_KonstLUT[27][comp] = &KonstantColors[3][BLU_C];
|
|
m_KonstLUT[28][comp] = &KonstantColors[0][ALP_C];
|
|
m_KonstLUT[29][comp] = &KonstantColors[1][ALP_C];
|
|
m_KonstLUT[30][comp] = &KonstantColors[2][ALP_C];
|
|
m_KonstLUT[31][comp] = &KonstantColors[3][ALP_C];
|
|
}
|
|
|
|
m_BiasLUT[0] = 0;
|
|
m_BiasLUT[1] = 128;
|
|
m_BiasLUT[2] = -128;
|
|
m_BiasLUT[3] = 0;
|
|
|
|
m_ScaleLShiftLUT[0] = 0;
|
|
m_ScaleLShiftLUT[1] = 1;
|
|
m_ScaleLShiftLUT[2] = 2;
|
|
m_ScaleLShiftLUT[3] = 0;
|
|
|
|
m_ScaleRShiftLUT[0] = 0;
|
|
m_ScaleRShiftLUT[1] = 0;
|
|
m_ScaleRShiftLUT[2] = 0;
|
|
m_ScaleRShiftLUT[3] = 1;
|
|
}
|
|
|
|
static inline s16 Clamp255(s16 in)
|
|
{
|
|
return in>255?255:(in<0?0:in);
|
|
}
|
|
|
|
static inline s16 Clamp1024(s16 in)
|
|
{
|
|
return in>1023?1023:(in<-1024?-1024:in);
|
|
}
|
|
|
|
void Tev::SetRasColor(int colorChan, int swaptable)
|
|
{
|
|
switch (colorChan)
|
|
{
|
|
case 0: // Color0
|
|
{
|
|
u8 *color = Color[0];
|
|
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
swaptable++;
|
|
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
}
|
|
break;
|
|
case 1: // Color1
|
|
{
|
|
u8 *color = Color[1];
|
|
RasColor[RED_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[GRN_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
swaptable++;
|
|
RasColor[BLU_C] = color[bpmem.tevksel[swaptable].swap1];
|
|
RasColor[ALP_C] = color[bpmem.tevksel[swaptable].swap2];
|
|
}
|
|
break;
|
|
case 5: // alpha bump
|
|
{
|
|
for (s16& comp : RasColor)
|
|
{
|
|
comp = AlphaBump;
|
|
}
|
|
}
|
|
break;
|
|
case 6: // alpha bump normalized
|
|
{
|
|
u8 normalized = AlphaBump | AlphaBump >> 5;
|
|
for (s16& comp : RasColor)
|
|
{
|
|
comp = normalized;
|
|
}
|
|
}
|
|
break;
|
|
default: // zero
|
|
{
|
|
for (s16& comp : RasColor)
|
|
{
|
|
comp = 0;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void Tev::DrawColorRegular(TevStageCombiner::ColorCombiner &cc, const InputRegType inputs[4])
|
|
{
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
const InputRegType& InputReg = inputs[BLU_C + i];
|
|
|
|
u16 c = InputReg.c + (InputReg.c >> 7);
|
|
|
|
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
|
|
temp <<= m_ScaleLShiftLUT[cc.shift];
|
|
temp += (cc.shift == 3) ? 0 : (cc.op == 1) ? 127 : 128;
|
|
temp >>= 8;
|
|
temp = cc.op ? -temp : temp;
|
|
|
|
s32 result = ((InputReg.d + m_BiasLUT[cc.bias]) << m_ScaleLShiftLUT[cc.shift]) + temp;
|
|
result = result >> m_ScaleRShiftLUT[cc.shift];
|
|
|
|
Reg[cc.dest][BLU_C + i] = result;
|
|
}
|
|
}
|
|
|
|
void Tev::DrawColorCompare(TevStageCombiner::ColorCombiner &cc, const InputRegType inputs[4])
|
|
{
|
|
for (int i = BLU_C; i <= RED_C; i++)
|
|
{
|
|
switch ((cc.shift<<1)|cc.op|8) // encoded compare mode
|
|
{
|
|
case TEVCMP_R8_GT:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[i].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_R8_EQ:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[i].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_GR16_GT:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_GR16_EQ:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_GT:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a > b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_EQ:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[cc.dest][i] = inputs[i].d + ((a == b) ? inputs[i].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_RGB8_GT:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a > inputs[i].b) ? inputs[i].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_RGB8_EQ:
|
|
Reg[cc.dest][i] = inputs[i].d + ((inputs[i].a == inputs[i].b) ? inputs[i].c : 0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Tev::DrawAlphaRegular(TevStageCombiner::AlphaCombiner &ac, const InputRegType inputs[4])
|
|
{
|
|
const InputRegType& InputReg = inputs[ALP_C];
|
|
|
|
u16 c = InputReg.c + (InputReg.c >> 7);
|
|
|
|
s32 temp = InputReg.a * (256 - c) + (InputReg.b * c);
|
|
temp <<= m_ScaleLShiftLUT[ac.shift];
|
|
temp += (ac.shift != 3) ? 0 : (ac.op == 1) ? 127 : 128;
|
|
temp = ac.op ? (-temp >> 8) : (temp >> 8);
|
|
|
|
s32 result = ((InputReg.d + m_BiasLUT[ac.bias]) << m_ScaleLShiftLUT[ac.shift]) + temp;
|
|
result = result >> m_ScaleRShiftLUT[ac.shift];
|
|
|
|
Reg[ac.dest][ALP_C] = result;
|
|
}
|
|
|
|
void Tev::DrawAlphaCompare(TevStageCombiner::AlphaCombiner& ac, const InputRegType inputs[4])
|
|
{
|
|
switch ((ac.shift<<1)|ac.op|8) // encoded compare mode
|
|
{
|
|
case TEVCMP_R8_GT:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[RED_C].a > inputs[RED_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_R8_EQ:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[RED_C].a == inputs[RED_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_GR16_GT:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_GR16_EQ:
|
|
{
|
|
u32 a = (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_GT:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a > b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_BGR24_EQ:
|
|
{
|
|
u32 a = (inputs[BLU_C].a << 16) | (inputs[GRN_C].a << 8) | inputs[RED_C].a;
|
|
u32 b = (inputs[BLU_C].b << 16) | (inputs[GRN_C].b << 8) | inputs[RED_C].b;
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((a == b) ? inputs[ALP_C].c : 0);
|
|
}
|
|
break;
|
|
|
|
case TEVCMP_A8_GT:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[ALP_C].a > inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
|
|
case TEVCMP_A8_EQ:
|
|
Reg[ac.dest][ALP_C] = inputs[ALP_C].d + ((inputs[ALP_C].a == inputs[ALP_C].b) ? inputs[ALP_C].c : 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static bool AlphaCompare(int alpha, int ref, AlphaTest::CompareMode comp)
|
|
{
|
|
switch (comp)
|
|
{
|
|
case AlphaTest::ALWAYS: return true;
|
|
case AlphaTest::NEVER: return false;
|
|
case AlphaTest::LEQUAL: return alpha <= ref;
|
|
case AlphaTest::LESS: return alpha < ref;
|
|
case AlphaTest::GEQUAL: return alpha >= ref;
|
|
case AlphaTest::GREATER: return alpha > ref;
|
|
case AlphaTest::EQUAL: return alpha == ref;
|
|
case AlphaTest::NEQUAL: return alpha != ref;
|
|
default: return true;
|
|
}
|
|
}
|
|
|
|
static bool TevAlphaTest(int alpha)
|
|
{
|
|
bool comp0 = AlphaCompare(alpha, bpmem.alpha_test.ref0, bpmem.alpha_test.comp0);
|
|
bool comp1 = AlphaCompare(alpha, bpmem.alpha_test.ref1, bpmem.alpha_test.comp1);
|
|
|
|
switch (bpmem.alpha_test.logic)
|
|
{
|
|
case 0: return comp0 && comp1; // and
|
|
case 1: return comp0 || comp1; // or
|
|
case 2: return comp0 ^ comp1; // xor
|
|
case 3: return !(comp0 ^ comp1); // xnor
|
|
default: return true;
|
|
}
|
|
}
|
|
|
|
static inline s32 WrapIndirectCoord(s32 coord, int wrapMode)
|
|
{
|
|
switch (wrapMode)
|
|
{
|
|
case ITW_OFF:
|
|
return coord;
|
|
case ITW_256:
|
|
return (coord % (256 << 7));
|
|
case ITW_128:
|
|
return (coord % (128 << 7));
|
|
case ITW_64:
|
|
return (coord % (64 << 7));
|
|
case ITW_32:
|
|
return (coord % (32 << 7));
|
|
case ITW_16:
|
|
return (coord % (16 << 7));
|
|
case ITW_0:
|
|
return 0;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void Tev::Indirect(unsigned int stageNum, s32 s, s32 t)
|
|
{
|
|
TevStageIndirect &indirect = bpmem.tevind[stageNum];
|
|
u8 *indmap = IndirectTex[indirect.bt];
|
|
|
|
s32 indcoord[3];
|
|
|
|
// alpha bump select
|
|
switch (indirect.bs)
|
|
{
|
|
case ITBA_OFF:
|
|
AlphaBump = 0;
|
|
break;
|
|
case ITBA_S:
|
|
AlphaBump = indmap[TextureSampler::ALP_SMP];
|
|
break;
|
|
case ITBA_T:
|
|
AlphaBump = indmap[TextureSampler::BLU_SMP];
|
|
break;
|
|
case ITBA_U:
|
|
AlphaBump = indmap[TextureSampler::GRN_SMP];
|
|
break;
|
|
}
|
|
|
|
// bias select
|
|
s16 biasValue = indirect.fmt==ITF_8?-128:1;
|
|
s16 bias[3];
|
|
bias[0] = indirect.bias&1?biasValue:0;
|
|
bias[1] = indirect.bias&2?biasValue:0;
|
|
bias[2] = indirect.bias&4?biasValue:0;
|
|
|
|
// format
|
|
switch (indirect.fmt)
|
|
{
|
|
case ITF_8:
|
|
indcoord[0] = indmap[TextureSampler::ALP_SMP] + bias[0];
|
|
indcoord[1] = indmap[TextureSampler::BLU_SMP] + bias[1];
|
|
indcoord[2] = indmap[TextureSampler::GRN_SMP] + bias[2];
|
|
AlphaBump = AlphaBump & 0xf8;
|
|
break;
|
|
case ITF_5:
|
|
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x1f) + bias[0];
|
|
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x1f) + bias[1];
|
|
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x1f) + bias[2];
|
|
AlphaBump = AlphaBump & 0xe0;
|
|
break;
|
|
case ITF_4:
|
|
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x0f) + bias[0];
|
|
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x0f) + bias[1];
|
|
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x0f) + bias[2];
|
|
AlphaBump = AlphaBump & 0xf0;
|
|
break;
|
|
case ITF_3:
|
|
indcoord[0] = (indmap[TextureSampler::ALP_SMP] & 0x07) + bias[0];
|
|
indcoord[1] = (indmap[TextureSampler::BLU_SMP] & 0x07) + bias[1];
|
|
indcoord[2] = (indmap[TextureSampler::GRN_SMP] & 0x07) + bias[2];
|
|
AlphaBump = AlphaBump & 0xf8;
|
|
break;
|
|
default:
|
|
PanicAlert("Tev::Indirect");
|
|
return;
|
|
}
|
|
|
|
s32 indtevtrans[2] = { 0,0 };
|
|
|
|
// matrix multiply - results might overflow, but we don't care since we only use the lower 24 bits of the result.
|
|
int indmtxid = indirect.mid & 3;
|
|
if (indmtxid)
|
|
{
|
|
IND_MTX &indmtx = bpmem.indmtx[indmtxid - 1];
|
|
int scale = ((u32)indmtx.col0.s0 << 0) |
|
|
((u32)indmtx.col1.s1 << 2) |
|
|
((u32)indmtx.col2.s2 << 4);
|
|
|
|
int shift;
|
|
|
|
switch (indirect.mid & 12)
|
|
{
|
|
case 0:
|
|
// matrix values are S0.10, output format is S17.7, so divide by 8
|
|
shift = (17 - scale);
|
|
indtevtrans[0] = (indmtx.col0.ma * indcoord[0] + indmtx.col1.mc * indcoord[1] + indmtx.col2.me * indcoord[2]) >> 3;
|
|
indtevtrans[1] = (indmtx.col0.mb * indcoord[0] + indmtx.col1.md * indcoord[1] + indmtx.col2.mf * indcoord[2]) >> 3;
|
|
break;
|
|
case 4: // s matrix
|
|
// s is S17.7, matrix elements are divided by 256, output is S17.7, so divide by 256. - TODO: Maybe, since s is actually stored as S24, we should divide by 256*64?
|
|
shift = (17 - scale);
|
|
indtevtrans[0] = s * indcoord[0] / 256;
|
|
indtevtrans[1] = t * indcoord[0] / 256;
|
|
break;
|
|
case 8: // t matrix
|
|
shift = (17 - scale);
|
|
indtevtrans[0] = s * indcoord[1] / 256;
|
|
indtevtrans[1] = t * indcoord[1] / 256;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
indtevtrans[0] = shift >= 0 ? indtevtrans[0] >> shift : indtevtrans[0] << -shift;
|
|
indtevtrans[1] = shift >= 0 ? indtevtrans[1] >> shift : indtevtrans[1] << -shift;
|
|
}
|
|
|
|
if (indirect.fb_addprev)
|
|
{
|
|
TexCoord.s += (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
|
|
TexCoord.t += (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
|
|
}
|
|
else
|
|
{
|
|
TexCoord.s = (int)(WrapIndirectCoord(s, indirect.sw) + indtevtrans[0]);
|
|
TexCoord.t = (int)(WrapIndirectCoord(t, indirect.tw) + indtevtrans[1]);
|
|
}
|
|
}
|
|
|
|
void Tev::Draw()
|
|
{
|
|
_assert_(Position[0] >= 0 && Position[0] < EFB_WIDTH);
|
|
_assert_(Position[1] >= 0 && Position[1] < EFB_HEIGHT);
|
|
|
|
INCSTAT(swstats.thisFrame.tevPixelsIn);
|
|
|
|
for (unsigned int stageNum = 0; stageNum < bpmem.genMode.numindstages; stageNum++)
|
|
{
|
|
int stageNum2 = stageNum >> 1;
|
|
int stageOdd = stageNum&1;
|
|
|
|
u32 texcoordSel = bpmem.tevindref.getTexCoord(stageNum);
|
|
u32 texmap = bpmem.tevindref.getTexMap(stageNum);
|
|
|
|
const TEXSCALE& texscale = bpmem.texscale[stageNum2];
|
|
s32 scaleS = stageOdd ? texscale.ss1:texscale.ss0;
|
|
s32 scaleT = stageOdd ? texscale.ts1:texscale.ts0;
|
|
|
|
TextureSampler::Sample(Uv[texcoordSel].s >> scaleS, Uv[texcoordSel].t >> scaleT,
|
|
IndirectLod[stageNum], IndirectLinear[stageNum], texmap, IndirectTex[stageNum]);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevStages)
|
|
{
|
|
u8 stage[4] = {
|
|
IndirectTex[stageNum][TextureSampler::ALP_SMP],
|
|
IndirectTex[stageNum][TextureSampler::BLU_SMP],
|
|
IndirectTex[stageNum][TextureSampler::GRN_SMP],
|
|
255
|
|
};
|
|
DebugUtil::DrawTempBuffer(stage, INDIRECT + stageNum);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for (unsigned int stageNum = 0; stageNum <= bpmem.genMode.numtevstages; stageNum++)
|
|
{
|
|
int stageNum2 = stageNum >> 1;
|
|
int stageOdd = stageNum&1;
|
|
TwoTevStageOrders &order = bpmem.tevorders[stageNum2];
|
|
TevKSel &kSel = bpmem.tevksel[stageNum2];
|
|
|
|
// stage combiners
|
|
TevStageCombiner::ColorCombiner &cc = bpmem.combiners[stageNum].colorC;
|
|
TevStageCombiner::AlphaCombiner &ac = bpmem.combiners[stageNum].alphaC;
|
|
|
|
int texcoordSel = order.getTexCoord(stageOdd);
|
|
int texmap = order.getTexMap(stageOdd);
|
|
|
|
Indirect(stageNum, Uv[texcoordSel].s, Uv[texcoordSel].t);
|
|
|
|
// sample texture
|
|
if (order.getEnable(stageOdd))
|
|
{
|
|
// RGBA
|
|
u8 texel[4];
|
|
|
|
TextureSampler::Sample(TexCoord.s, TexCoord.t, TextureLod[stageNum], TextureLinear[stageNum], texmap, texel);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevTextureFetches)
|
|
DebugUtil::DrawTempBuffer(texel, DIRECT_TFETCH + stageNum);
|
|
#endif
|
|
|
|
int swaptable = ac.tswap * 2;
|
|
|
|
TexColor[RED_C] = texel[bpmem.tevksel[swaptable].swap1];
|
|
TexColor[GRN_C] = texel[bpmem.tevksel[swaptable].swap2];
|
|
swaptable++;
|
|
TexColor[BLU_C] = texel[bpmem.tevksel[swaptable].swap1];
|
|
TexColor[ALP_C] = texel[bpmem.tevksel[swaptable].swap2];
|
|
}
|
|
|
|
// set konst for this stage
|
|
int kc = kSel.getKC(stageOdd);
|
|
int ka = kSel.getKA(stageOdd);
|
|
StageKonst[RED_C] = *(m_KonstLUT[kc][RED_C]);
|
|
StageKonst[GRN_C] = *(m_KonstLUT[kc][GRN_C]);
|
|
StageKonst[BLU_C] = *(m_KonstLUT[kc][BLU_C]);
|
|
StageKonst[ALP_C] = *(m_KonstLUT[ka][ALP_C]);
|
|
|
|
// set color
|
|
SetRasColor(order.getColorChan(stageOdd), ac.rswap * 2);
|
|
|
|
// combine inputs
|
|
InputRegType inputs[4];
|
|
for (int i = 0; i < 3; i++)
|
|
{
|
|
inputs[BLU_C + i].a = *m_ColorInputLUT[cc.a][i];
|
|
inputs[BLU_C + i].b = *m_ColorInputLUT[cc.b][i];
|
|
inputs[BLU_C + i].c = *m_ColorInputLUT[cc.c][i];
|
|
inputs[BLU_C + i].d = *m_ColorInputLUT[cc.d][i];
|
|
}
|
|
inputs[ALP_C].a = *m_AlphaInputLUT[ac.a];
|
|
inputs[ALP_C].b = *m_AlphaInputLUT[ac.b];
|
|
inputs[ALP_C].c = *m_AlphaInputLUT[ac.c];
|
|
inputs[ALP_C].d = *m_AlphaInputLUT[ac.d];
|
|
|
|
if (cc.bias != 3)
|
|
DrawColorRegular(cc, inputs);
|
|
else
|
|
DrawColorCompare(cc, inputs);
|
|
|
|
if (cc.clamp)
|
|
{
|
|
Reg[cc.dest][RED_C] = Clamp255(Reg[cc.dest][RED_C]);
|
|
Reg[cc.dest][GRN_C] = Clamp255(Reg[cc.dest][GRN_C]);
|
|
Reg[cc.dest][BLU_C] = Clamp255(Reg[cc.dest][BLU_C]);
|
|
}
|
|
else
|
|
{
|
|
Reg[cc.dest][RED_C] = Clamp1024(Reg[cc.dest][RED_C]);
|
|
Reg[cc.dest][GRN_C] = Clamp1024(Reg[cc.dest][GRN_C]);
|
|
Reg[cc.dest][BLU_C] = Clamp1024(Reg[cc.dest][BLU_C]);
|
|
}
|
|
|
|
if (ac.bias != 3)
|
|
DrawAlphaRegular(ac, inputs);
|
|
else
|
|
DrawAlphaCompare(ac, inputs);
|
|
|
|
if (ac.clamp)
|
|
Reg[ac.dest][ALP_C] = Clamp255(Reg[ac.dest][ALP_C]);
|
|
else
|
|
Reg[ac.dest][ALP_C] = Clamp1024(Reg[ac.dest][ALP_C]);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevStages)
|
|
{
|
|
u8 stage[4] = {(u8)Reg[0][RED_C], (u8)Reg[0][GRN_C], (u8)Reg[0][BLU_C], (u8)Reg[0][ALP_C]};
|
|
DebugUtil::DrawTempBuffer(stage, DIRECT + stageNum);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// convert to 8 bits per component
|
|
// the results of the last tev stage are put onto the screen,
|
|
// regardless of the used destination register - TODO: Verify!
|
|
u32 color_index = bpmem.combiners[bpmem.genMode.numtevstages].colorC.dest;
|
|
u32 alpha_index = bpmem.combiners[bpmem.genMode.numtevstages].alphaC.dest;
|
|
u8 output[4] = {(u8)Reg[alpha_index][ALP_C], (u8)Reg[color_index][BLU_C], (u8)Reg[color_index][GRN_C], (u8)Reg[color_index][RED_C]};
|
|
|
|
if (!TevAlphaTest(output[ALP_C]))
|
|
return;
|
|
|
|
// z texture
|
|
if (bpmem.ztex2.op)
|
|
{
|
|
u32 ztex = bpmem.ztex1.bias;
|
|
switch (bpmem.ztex2.type)
|
|
{
|
|
case 0: // 8 bit
|
|
ztex += TexColor[ALP_C];
|
|
break;
|
|
case 1: // 16 bit
|
|
ztex += TexColor[ALP_C] << 8 | TexColor[RED_C];
|
|
break;
|
|
case 2: // 24 bit
|
|
ztex += TexColor[RED_C] << 16 | TexColor[GRN_C] << 8 | TexColor[BLU_C];
|
|
break;
|
|
}
|
|
|
|
if (bpmem.ztex2.op == ZTEXTURE_ADD)
|
|
ztex += Position[2];
|
|
|
|
Position[2] = ztex & 0x00ffffff;
|
|
}
|
|
|
|
// fog
|
|
if (bpmem.fog.c_proj_fsel.fsel)
|
|
{
|
|
float ze;
|
|
|
|
if (bpmem.fog.c_proj_fsel.proj == 0)
|
|
{
|
|
// perspective
|
|
// ze = A/(B - (Zs >> B_SHF))
|
|
s32 denom = bpmem.fog.b_magnitude - (Position[2] >> bpmem.fog.b_shift);
|
|
//in addition downscale magnitude and zs to 0.24 bits
|
|
ze = (bpmem.fog.a.GetA() * 16777215.0f) / (float)denom;
|
|
}
|
|
else
|
|
{
|
|
// orthographic
|
|
// ze = a*Zs
|
|
//in addition downscale zs to 0.24 bits
|
|
ze = bpmem.fog.a.GetA() * ((float)Position[2] / 16777215.0f);
|
|
|
|
}
|
|
|
|
if (bpmem.fogRange.Base.Enabled)
|
|
{
|
|
// TODO: This is untested and should definitely be checked against real hw.
|
|
// - No idea if offset is really normalized against the viewport width or against the projection matrix or yet something else
|
|
// - scaling of the "k" coefficient isn't clear either.
|
|
|
|
// First, calculate the offset from the viewport center (normalized to 0..1)
|
|
float offset = (Position[0] - (bpmem.fogRange.Base.Center - 342)) / (float)xfmem.viewport.wd;
|
|
|
|
// Based on that, choose the index such that points which are far away from the z-axis use the 10th "k" value and such that central points use the first value.
|
|
float floatindex = 9.f - std::abs(offset) * 9.f;
|
|
floatindex = (floatindex < 0.f) ? 0.f : (floatindex > 9.f) ? 9.f : floatindex; // TODO: This shouldn't be necessary!
|
|
|
|
// Get the two closest integer indices, look up the corresponding samples
|
|
int indexlower = (int)floor(floatindex);
|
|
int indexupper = indexlower + 1;
|
|
// Look up coefficient... Seems like multiplying by 4 makes Fortune Street work properly (fog is too strong without the factor)
|
|
float klower = bpmem.fogRange.K[indexlower/2].GetValue(indexlower%2) * 4.f;
|
|
float kupper = bpmem.fogRange.K[indexupper/2].GetValue(indexupper%2) * 4.f;
|
|
|
|
// linearly interpolate the samples and multiple ze by the resulting adjustment factor
|
|
float factor = indexupper - floatindex;
|
|
float k = klower * factor + kupper * (1.f - factor);
|
|
float x_adjust = sqrt(offset*offset + k*k)/k;
|
|
ze *= x_adjust; // NOTE: This is basically dividing by a cosine (hidden behind GXInitFogAdjTable): 1/cos = c/b = sqrt(a^2+b^2)/b
|
|
}
|
|
|
|
ze -= bpmem.fog.c_proj_fsel.GetC();
|
|
|
|
// clamp 0 to 1
|
|
float fog = (ze<0.0f) ? 0.0f : ((ze>1.0f) ? 1.0f : ze);
|
|
|
|
switch (bpmem.fog.c_proj_fsel.fsel)
|
|
{
|
|
case 4: // exp
|
|
fog = 1.0f - pow(2.0f, -8.0f * fog);
|
|
break;
|
|
case 5: // exp2
|
|
fog = 1.0f - pow(2.0f, -8.0f * fog * fog);
|
|
break;
|
|
case 6: // backward exp
|
|
fog = 1.0f - fog;
|
|
fog = pow(2.0f, -8.0f * fog);
|
|
break;
|
|
case 7: // backward exp2
|
|
fog = 1.0f - fog;
|
|
fog = pow(2.0f, -8.0f * fog * fog);
|
|
break;
|
|
}
|
|
|
|
// lerp from output to fog color
|
|
u32 fogInt = (u32)(fog * 256);
|
|
u32 invFog = 256 - fogInt;
|
|
|
|
output[RED_C] = (output[RED_C] * invFog + fogInt * bpmem.fog.color.r) >> 8;
|
|
output[GRN_C] = (output[GRN_C] * invFog + fogInt * bpmem.fog.color.g) >> 8;
|
|
output[BLU_C] = (output[BLU_C] * invFog + fogInt * bpmem.fog.color.b) >> 8;
|
|
}
|
|
|
|
bool late_ztest = !bpmem.zcontrol.early_ztest || !g_SWVideoConfig.bZComploc;
|
|
if (late_ztest && bpmem.zmode.testenable)
|
|
{
|
|
// TODO: Check against hw if these values get incremented even if depth testing is disabled
|
|
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_INPUT);
|
|
|
|
if (!EfbInterface::ZCompare(Position[0], Position[1], Position[2]))
|
|
return;
|
|
|
|
EfbInterface::IncPerfCounterQuadCount(PQ_ZCOMP_OUTPUT);
|
|
}
|
|
|
|
// branchless bounding box update
|
|
BoundingBox::coords[BoundingBox::LEFT] = std::min((u16)Position[0], BoundingBox::coords[BoundingBox::LEFT]);
|
|
BoundingBox::coords[BoundingBox::RIGHT] = std::max((u16)Position[0], BoundingBox::coords[BoundingBox::RIGHT]);
|
|
BoundingBox::coords[BoundingBox::TOP] = std::min((u16)Position[1], BoundingBox::coords[BoundingBox::TOP]);
|
|
BoundingBox::coords[BoundingBox::BOTTOM] = std::max((u16)Position[1], BoundingBox::coords[BoundingBox::BOTTOM]);
|
|
|
|
#if ALLOW_TEV_DUMPS
|
|
if (g_SWVideoConfig.bDumpTevStages)
|
|
{
|
|
for (u32 i = 0; i < bpmem.genMode.numindstages; ++i)
|
|
DebugUtil::CopyTempBuffer(Position[0], Position[1], INDIRECT, i, "Indirect");
|
|
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
|
|
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT, i, "Stage");
|
|
}
|
|
|
|
if (g_SWVideoConfig.bDumpTevTextureFetches)
|
|
{
|
|
for (u32 i = 0; i <= bpmem.genMode.numtevstages; ++i)
|
|
{
|
|
TwoTevStageOrders &order = bpmem.tevorders[i >> 1];
|
|
if (order.getEnable(i & 1))
|
|
DebugUtil::CopyTempBuffer(Position[0], Position[1], DIRECT_TFETCH, i, "TFetch");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
INCSTAT(swstats.thisFrame.tevPixelsOut);
|
|
EfbInterface::IncPerfCounterQuadCount(PQ_BLEND_INPUT);
|
|
|
|
EfbInterface::BlendTev(Position[0], Position[1], output);
|
|
}
|
|
|
|
void Tev::SetRegColor(int reg, int comp, bool konst, s16 color)
|
|
{
|
|
if (konst)
|
|
{
|
|
KonstantColors[reg][comp] = color;
|
|
}
|
|
else
|
|
{
|
|
Reg[reg][comp] = color;
|
|
}
|
|
}
|
|
|
|
void Tev::DoState(PointerWrap &p)
|
|
{
|
|
p.DoArray(Reg);
|
|
|
|
p.DoArray(KonstantColors);
|
|
p.DoArray(TexColor);
|
|
p.DoArray(RasColor);
|
|
p.DoArray(StageKonst);
|
|
p.DoArray(Zero16);
|
|
|
|
p.DoArray(FixedConstants);
|
|
p.Do(AlphaBump);
|
|
p.DoArray(IndirectTex);
|
|
p.Do(TexCoord);
|
|
|
|
p.DoArray(m_BiasLUT);
|
|
p.DoArray(m_ScaleLShiftLUT);
|
|
p.DoArray(m_ScaleRShiftLUT);
|
|
|
|
p.DoArray(Position);
|
|
p.DoArray(Color);
|
|
p.DoArray(Uv);
|
|
p.DoArray(IndirectLod);
|
|
p.DoArray(IndirectLinear);
|
|
p.DoArray(TextureLod);
|
|
p.DoArray(TextureLinear);
|
|
}
|