pokeemerald/src/save.c
2018-09-10 01:01:39 +02:00

971 lines
24 KiB
C

#include "global.h"
#include "gba/flash_internal.h"
#include "save.h"
#include "constants/game_stat.h"
#include "task.h"
#include "decompress.h"
#include "load_save.h"
#include "overworld.h"
// for the chunk declarations
extern bool8 gSoftResetDisabled;
extern u32 gUnknown_0203CF5C;
// Divide save blocks into individual chunks to be written to flash sectors
// Each 4 KiB flash sector contains 3968 bytes of actual data followed by a 128 byte footer
#define SECTOR_DATA_SIZE 3968
#define SECTOR_FOOTER_SIZE 128
/*
* Sector Layout:
*
* Sectors 0 - 13: Save Slot 1
* Sectors 14 - 27: Save Slot 2
* Sectors 28 - 29: Hall of Fame
* Sector 30: e-Reader/Mystery Gift Stuff (note: e-Reader is deprecated in Emerald US)
* Sector 31: Recorded Battle
*
* There are two save slots for saving the player's game data. We alternate between
* them each time the game is saved, so that if the current save slot is corrupt,
* we can load the previous one. We also rotate the sectors in each save slot
* so that the same data is not always being written to the same sector. This
* might be done to reduce wear on the flash memory, but I'm not sure, since all
* 14 sectors get written anyway.
*/
// (u8 *)structure was removed from the first statement of the macro in Emerald.
// This is because malloc is used to allocate addresses so storing the raw
// addresses should not be done in the offsets information.
#define SAVEBLOCK_CHUNK(structure, chunkNum) \
{ \
chunkNum * SECTOR_DATA_SIZE, \
min(sizeof(structure) - chunkNum * SECTOR_DATA_SIZE, SECTOR_DATA_SIZE) \
} \
const struct SaveSectionOffsets gSaveSectionOffsets[] =
{
SAVEBLOCK_CHUNK(gSaveblock2, 0),
SAVEBLOCK_CHUNK(gSaveblock1, 0),
SAVEBLOCK_CHUNK(gSaveblock1, 1),
SAVEBLOCK_CHUNK(gSaveblock1, 2),
SAVEBLOCK_CHUNK(gSaveblock1, 3),
SAVEBLOCK_CHUNK(gPokemonStorage, 0),
SAVEBLOCK_CHUNK(gPokemonStorage, 1),
SAVEBLOCK_CHUNK(gPokemonStorage, 2),
SAVEBLOCK_CHUNK(gPokemonStorage, 3),
SAVEBLOCK_CHUNK(gPokemonStorage, 4),
SAVEBLOCK_CHUNK(gPokemonStorage, 5),
SAVEBLOCK_CHUNK(gPokemonStorage, 6),
SAVEBLOCK_CHUNK(gPokemonStorage, 7),
SAVEBLOCK_CHUNK(gPokemonStorage, 8),
};
extern void DoSaveFailedScreen(u8); // save_failed_screen
extern bool32 ProgramFlashSectorAndVerify(u8 sector, u8 *data);
extern void save_serialize_map(void);
extern void sub_800ADF8(void);
extern bool8 sub_800A520(void);
// iwram common
u16 gLastWrittenSector;
u32 gLastSaveCounter;
u16 gLastKnownGoodSector;
u32 gDamagedSaveSectors;
u32 gSaveCounter;
struct SaveSection *gFastSaveSection;
u16 gUnknown_03006208;
u16 gSaveUnusedVar;
u16 gSaveFileStatus;
void (*gGameContinueCallback)(void);
struct SaveSectionLocation gRamSaveSectionLocations[0xE];
u16 gSaveUnusedVar2;
u16 gUnknown_03006294;
EWRAM_DATA struct SaveSection gSaveDataBuffer = {0};
void ClearSaveData(void)
{
u16 i;
for (i = 0; i < NUM_SECTORS_PER_SLOT; i++)
{
EraseFlashSector(i);
EraseFlashSector(i + NUM_SECTORS_PER_SLOT); // clear slot 2.
}
}
void Save_ResetSaveCounters(void)
{
gSaveCounter = 0;
gLastWrittenSector = 0;
gDamagedSaveSectors = 0;
}
bool32 SetDamagedSectorBits(u8 op, u8 bit)
{
bool32 retVal = FALSE;
switch (op)
{
case ENABLE:
gDamagedSaveSectors |= (1 << bit);
break;
case DISABLE:
gDamagedSaveSectors &= ~(1 << bit);
break;
case CHECK: // unused
if (gDamagedSaveSectors & (1 << bit))
retVal = TRUE;
break;
}
return retVal;
}
u8 save_write_to_flash(u16 a1, const struct SaveSectionLocation *location)
{
u32 retVal;
u16 i;
gFastSaveSection = &gSaveDataBuffer;
if (a1 != 0xFFFF) // for link
{
retVal = HandleWriteSector(a1, location);
}
else
{
gLastKnownGoodSector = gLastWrittenSector; // backup the current written sector before attempting to write.
gLastSaveCounter = gSaveCounter;
gLastWrittenSector++;
gLastWrittenSector = gLastWrittenSector % 0xE; // array count save sector locations
gSaveCounter++;
retVal = 1;
for (i = 0; i < 0xE; i++)
HandleWriteSector(i, location);
if (gDamagedSaveSectors != 0) // skip the damaged sector.
{
retVal = 0xFF;
gLastWrittenSector = gLastKnownGoodSector;
gSaveCounter = gLastSaveCounter;
}
}
return retVal;
}
u8 HandleWriteSector(u16 a1, const struct SaveSectionLocation *location)
{
u16 i;
u16 sector;
u8 *data;
u16 size;
sector = a1 + gLastWrittenSector;
sector %= 0xE;
sector += 0xE * (gSaveCounter % 2);
data = location[a1].data;
size = location[a1].size;
// clear save section.
for (i = 0; i < sizeof(struct SaveSection); i++)
((char *)gFastSaveSection)[i] = 0;
gFastSaveSection->id = a1;
gFastSaveSection->security = UNKNOWN_CHECK_VALUE;
gFastSaveSection->counter = gSaveCounter;
for (i = 0; i < size; i++)
gFastSaveSection->data[i] = data[i];
gFastSaveSection->checksum = CalculateChecksum(data, size);
return TryWriteSector(sector, gFastSaveSection->data);
}
u8 HandleWriteSectorNBytes(u8 sector, u8 *data, u16 size)
{
u16 i;
struct SaveSection *section = &gSaveDataBuffer;
for (i = 0; i < sizeof(struct SaveSection); i++)
((char *)section)[i] = 0;
section->security = UNKNOWN_CHECK_VALUE;
for (i = 0; i < size; i++)
section->data[i] = data[i];
section->id = CalculateChecksum(data, size); // though this appears to be incorrect, it might be some sector checksum instead of a whole save checksum and only appears to be relevent to HOF data, if used.
return TryWriteSector(sector, section->data);
}
u8 TryWriteSector(u8 sector, u8 *data)
{
if (ProgramFlashSectorAndVerify(sector, data) != 0) // is damaged?
{
SetDamagedSectorBits(ENABLE, sector); // set damaged sector bits.
return 0xFF;
}
else
{
SetDamagedSectorBits(DISABLE, sector); // unset damaged sector bits. it's safe now.
return 1;
}
}
u32 RestoreSaveBackupVarsAndIncrement(const struct SaveSectionLocation *location) // location is unused
{
gFastSaveSection = &gSaveDataBuffer;
gLastKnownGoodSector = gLastWrittenSector;
gLastSaveCounter = gSaveCounter;
gLastWrittenSector++;
gLastWrittenSector = gLastWrittenSector % 0xE;
gSaveCounter++;
gUnknown_03006208 = 0;
gDamagedSaveSectors = 0;
return 0;
}
u32 RestoreSaveBackupVars(const struct SaveSectionLocation *location) // only ever called once, and gSaveBlock2 is passed to this function. location is unused
{
gFastSaveSection = &gSaveDataBuffer;
gLastKnownGoodSector = gLastWrittenSector;
gLastSaveCounter = gSaveCounter;
gUnknown_03006208 = 0;
gDamagedSaveSectors = 0;
return 0;
}
u8 sub_81529D4(u16 a1, const struct SaveSectionLocation *location)
{
u8 retVal;
if (gUnknown_03006208 < a1 - 1)
{
retVal = 1;
HandleWriteSector(gUnknown_03006208, location);
gUnknown_03006208++;
if (gDamagedSaveSectors)
{
retVal = 0xFF;
gLastWrittenSector = gLastKnownGoodSector;
gSaveCounter = gLastSaveCounter;
}
}
else
{
retVal = 0xFF;
}
return retVal;
}
u8 sub_8152A34(u16 a1, const struct SaveSectionLocation *location)
{
u8 retVal = 1;
ClearSaveData_2(a1 - 1, location);
if (gDamagedSaveSectors)
{
retVal = 0xFF;
gLastWrittenSector = gLastKnownGoodSector;
gSaveCounter = gLastSaveCounter;
}
return retVal;
}
u8 ClearSaveData_2(u16 a1, const struct SaveSectionLocation *location)
{
u16 i;
u16 sector;
u8 *data;
u16 size;
u8 status;
sector = a1 + gLastWrittenSector;
sector %= 0xE;
sector += 0xE * (gSaveCounter % 2);
data = location[a1].data;
size = location[a1].size;
// clear temp save section.
for (i = 0; i < sizeof(struct SaveSection); i++)
((char *)gFastSaveSection)[i] = 0;
gFastSaveSection->id = a1;
gFastSaveSection->security = UNKNOWN_CHECK_VALUE;
gFastSaveSection->counter = gSaveCounter;
// set temp section's data.
for (i = 0; i < size; i++)
gFastSaveSection->data[i] = data[i];
// calculate checksum.
gFastSaveSection->checksum = CalculateChecksum(data, size);
EraseFlashSector(sector);
status = 1;
for (i = 0; i < sizeof(struct UnkSaveSection); i++)
{
if (ProgramFlashByte(sector, i, ((u8 *)gFastSaveSection)[i]))
{
status = 0xFF;
break;
}
}
if (status == 0xFF)
{
SetDamagedSectorBits(ENABLE, sector);
return 0xFF;
}
else
{
status = 1;
for (i = 0; i < 7; i++)
{
if (ProgramFlashByte(sector, 0xFF9 + i, ((u8 *)gFastSaveSection)[0xFF9 + i]))
{
status = 0xFF;
break;
}
}
if (status == 0xFF)
{
SetDamagedSectorBits(ENABLE, sector);
return 0xFF;
}
else
{
SetDamagedSectorBits(DISABLE, sector);
return 1;
}
}
}
u8 sav12_xor_get(u16 a1, const struct SaveSectionLocation *location)
{
u16 sector;
sector = a1 + gLastWrittenSector; // no sub 1?
sector %= 0xE;
sector += 0xE * (gSaveCounter % 2);
if (ProgramFlashByte(sector, sizeof(struct UnkSaveSection), 0x25))
{
// sector is damaged, so enable the bit in gDamagedSaveSectors and restore the last written sector and save counter.
SetDamagedSectorBits(ENABLE, sector);
gLastWrittenSector = gLastKnownGoodSector;
gSaveCounter = gLastSaveCounter;
return 0xFF;
}
else
{
SetDamagedSectorBits(DISABLE, sector);
return 1;
}
}
u8 sub_8152CAC(u16 a1, const struct SaveSectionLocation *location)
{
u16 sector;
sector = a1 + gLastWrittenSector - 1;
sector %= 0xE;
sector += 0xE * (gSaveCounter % 2);
if (ProgramFlashByte(sector, sizeof(struct UnkSaveSection), ((u8 *)gFastSaveSection)[sizeof(struct UnkSaveSection)]))
{
// sector is damaged, so enable the bit in gDamagedSaveSectors and restore the last written sector and save counter.
SetDamagedSectorBits(ENABLE, sector);
gLastWrittenSector = gLastKnownGoodSector;
gSaveCounter = gLastSaveCounter;
return 0xFF;
}
else
{
SetDamagedSectorBits(DISABLE, sector);
return 1;
}
}
u8 sub_8152D44(u16 a1, const struct SaveSectionLocation *location)
{
u16 sector;
sector = a1 + gLastWrittenSector - 1; // no sub 1?
sector %= 0xE;
sector += 0xE * (gSaveCounter % 2);
if (ProgramFlashByte(sector, sizeof(struct UnkSaveSection), 0x25))
{
// sector is damaged, so enable the bit in gDamagedSaveSectors and restore the last written sector and save counter.
SetDamagedSectorBits(ENABLE, sector);
gLastWrittenSector = gLastKnownGoodSector;
gSaveCounter = gLastSaveCounter;
return 0xFF;
}
else
{
SetDamagedSectorBits(DISABLE, sector);
return 1;
}
}
u8 sub_8152DD0(u16 a1, const struct SaveSectionLocation *location)
{
u8 retVal;
gFastSaveSection = &gSaveDataBuffer;
if (a1 != 0xFFFF)
{
retVal = 0xFF;
}
else
{
retVal = GetSaveValidStatus(location);
sub_8152E10(0xFFFF, location);
}
return retVal;
}
u8 sub_8152E10(u16 a1, const struct SaveSectionLocation *location)
{
u16 i;
u16 checksum;
u16 v3 = 0xE * (gSaveCounter % 2);
u16 id;
for (i = 0; i < 0xE; i++)
{
DoReadFlashWholeSection(i + v3, gFastSaveSection);
id = gFastSaveSection->id;
if (id == 0)
gLastWrittenSector = i;
checksum = CalculateChecksum(gFastSaveSection->data, location[id].size);
if (gFastSaveSection->security == UNKNOWN_CHECK_VALUE
&& gFastSaveSection->checksum == checksum)
{
u16 j;
for (j = 0; j < location[id].size; j++)
((u8 *)location[id].data)[j] = gFastSaveSection->data[j];
}
}
return 1;
}
u8 GetSaveValidStatus(const struct SaveSectionLocation *location)
{
u16 i;
u16 checksum;
u32 saveSlot1Counter = 0;
u32 saveSlot2Counter = 0;
u32 slotCheckField = 0;
bool8 securityPassed = FALSE;
u8 saveSlot1Status;
u8 saveSlot2Status;
// check save slot 1.
for (i = 0; i < 0xE; i++)
{
DoReadFlashWholeSection(i, gFastSaveSection);
if (gFastSaveSection->security == UNKNOWN_CHECK_VALUE)
{
securityPassed = TRUE;
checksum = CalculateChecksum(gFastSaveSection->data, location[gFastSaveSection->id].size);
if (gFastSaveSection->checksum == checksum)
{
saveSlot1Counter = gFastSaveSection->counter;
slotCheckField |= 1 << gFastSaveSection->id;
}
}
}
if (securityPassed)
{
if (slotCheckField == 0x3FFF)
saveSlot1Status = 1;
else
saveSlot1Status = 255;
}
else
{
saveSlot1Status = 0;
}
slotCheckField = 0;
securityPassed = FALSE;
// check save slot 2.
for (i = 0; i < 0xE; i++)
{
DoReadFlashWholeSection(i + 0xE, gFastSaveSection);
if (gFastSaveSection->security == UNKNOWN_CHECK_VALUE)
{
securityPassed = TRUE;
checksum = CalculateChecksum(gFastSaveSection->data, location[gFastSaveSection->id].size);
if (gFastSaveSection->checksum == checksum)
{
saveSlot2Counter = gFastSaveSection->counter;
slotCheckField |= 1 << gFastSaveSection->id;
}
}
}
if (securityPassed)
{
if (slotCheckField == 0x3FFF)
saveSlot2Status = 1;
else
saveSlot2Status = 255;
}
else
{
saveSlot2Status = 0;
}
if (saveSlot1Status == 1 && saveSlot2Status == 1)
{
if ((saveSlot1Counter == -1 && saveSlot2Counter == 0) || (saveSlot1Counter == 0 && saveSlot2Counter == -1))
{
if ((unsigned)(saveSlot1Counter + 1) < (unsigned)(saveSlot2Counter + 1))
{
gSaveCounter = saveSlot2Counter;
}
else
{
gSaveCounter = saveSlot1Counter;
}
}
else
{
if (saveSlot1Counter < saveSlot2Counter)
{
gSaveCounter = saveSlot2Counter;
}
else
{
gSaveCounter = saveSlot1Counter;
}
}
return 1;
}
if (saveSlot1Status == 1)
{
gSaveCounter = saveSlot1Counter;
if (saveSlot2Status == 255)
return 255;
return 1;
}
if (saveSlot2Status == 1)
{
gSaveCounter = saveSlot2Counter;
if (saveSlot1Status == 255)
return 255;
return 1;
}
if (saveSlot1Status == 0 && saveSlot2Status == 0)
{
gSaveCounter = 0;
gLastWrittenSector = 0;
return 0;
}
gSaveCounter = 0;
gLastWrittenSector = 0;
return 2;
}
u8 sub_81530DC(u8 a1, u8 *data, u16 size)
{
u16 i;
struct SaveSection *section = &gSaveDataBuffer;
DoReadFlashWholeSection(a1, section);
if (section->security == UNKNOWN_CHECK_VALUE)
{
u16 checksum = CalculateChecksum(section->data, size);
if (section->id == checksum)
{
for (i = 0; i < size; i++)
data[i] = section->data[i];
return 1;
}
else
{
return 2;
}
}
else
{
return 0;
}
}
u8 DoReadFlashWholeSection(u8 sector, struct SaveSection *section)
{
ReadFlash(sector, 0, section->data, sizeof(struct SaveSection));
return 1;
}
u16 CalculateChecksum(void *data, u16 size)
{
u16 i;
u32 checksum = 0;
for (i = 0; i < (size / 4); i++)
checksum += *((u32 *)data)++;
return ((checksum >> 16) + checksum);
}
void UpdateSaveAddresses(void)
{
int i = 0;
gRamSaveSectionLocations[i].data = (void*)(gSaveBlock2Ptr) + gSaveSectionOffsets[i].toAdd;
gRamSaveSectionLocations[i].size = gSaveSectionOffsets[i].size;
for (i = 1; i < 5; i++)
{
gRamSaveSectionLocations[i].data = (void*)(gSaveBlock1Ptr) + gSaveSectionOffsets[i].toAdd;
gRamSaveSectionLocations[i].size = gSaveSectionOffsets[i].size;
}
for (i = 5; i < 14; i++)
{
gRamSaveSectionLocations[i].data = (void*)(gPokemonStoragePtr) + gSaveSectionOffsets[i].toAdd;
gRamSaveSectionLocations[i].size = gSaveSectionOffsets[i].size;
i++;i--; // needed to match
}
}
u8 HandleSavingData(u8 saveType)
{
u8 i;
u32 backupVar = gUnknown_0203CF5C;
u8 *tempAddr;
gUnknown_0203CF5C = 0;
UpdateSaveAddresses();
switch (saveType)
{
case SAVE_HALL_OF_FAME_ERASE_BEFORE: // deletes HOF before overwriting HOF completely. unused
for (i = 0xE * 2 + 0; i < 32; i++)
EraseFlashSector(i);
case SAVE_HALL_OF_FAME: // hall of fame.
if (GetGameStat(GAME_STAT_ENTERED_HOF) < 999)
IncrementGameStat(GAME_STAT_ENTERED_HOF);
SaveSerializedGame();
save_write_to_flash(0xFFFF, gRamSaveSectionLocations);
tempAddr = gDecompressionBuffer;
HandleWriteSectorNBytes(0x1C, tempAddr, 0xF80);
HandleWriteSectorNBytes(0x1D, tempAddr + 0xF80, 0xF80);
break;
case SAVE_NORMAL: // normal save. also called by overwriting your own save.
default:
SaveSerializedGame();
save_write_to_flash(0xFFFF, gRamSaveSectionLocations);
break;
case SAVE_LINK: // _081532C4
case SAVE_LINK2:
SaveSerializedGame();
for(i = 0; i < 5; i++)
ClearSaveData_2(i, gRamSaveSectionLocations);
for(i = 0; i < 5; i++)
sav12_xor_get(i, gRamSaveSectionLocations);
break;
// support for Ereader was removed in Emerald.
/*
case EREADER_SAVE: // used in mossdeep "game corner" before/after battling old man e-reader trainer
SaveSerializedGame();
save_write_to_flash(0, gRamSaveSectionLocations);
break;
*/
case SAVE_OVERWRITE_DIFFERENT_FILE:
for (i = (0xE * 2 + 0); i < 32; i++)
EraseFlashSector(i); // erase HOF.
SaveSerializedGame();
save_write_to_flash(0xFFFF, gRamSaveSectionLocations);
break;
}
gUnknown_0203CF5C = backupVar;
return 0;
}
u8 TrySavingData(u8 saveType) // TrySave
{
if(gFlashMemoryPresent == TRUE)
{
HandleSavingData(saveType);
if(gDamagedSaveSectors)
DoSaveFailedScreen(saveType);
else
goto OK; // really?
}
gUnknown_03006294 = 0xFF;
return 0xFF;
OK:
gUnknown_03006294 = 1;
return 1;
}
u8 sub_8153380(void) // trade.s save
{
if (gFlashMemoryPresent != TRUE)
return 1;
UpdateSaveAddresses();
SaveSerializedGame();
RestoreSaveBackupVarsAndIncrement(gRamSaveSectionLocations);
return 0;
}
bool8 sub_81533AC(void) // trade.s save
{
u8 retVal = sub_81529D4(0xE, gRamSaveSectionLocations);
if (gDamagedSaveSectors)
DoSaveFailedScreen(0);
if (retVal == 0xFF)
return 1;
else
return 0;
}
u8 sub_81533E0(void) // trade.s save
{
sub_8152A34(0xE, gRamSaveSectionLocations);
if (gDamagedSaveSectors)
DoSaveFailedScreen(0);
return 0;
}
u8 sub_8153408(void) // trade.s save
{
sub_8152CAC(0xE, gRamSaveSectionLocations);
if (gDamagedSaveSectors)
DoSaveFailedScreen(0);
return 0;
}
u8 sub_8153430(void)
{
if (gFlashMemoryPresent != TRUE)
return 1;
UpdateSaveAddresses();
SaveSerializedGame();
RestoreSaveBackupVars(gRamSaveSectionLocations);
sub_8152A34(gUnknown_03006208 + 1, gRamSaveSectionLocations);
return 0;
}
bool8 sub_8153474(void)
{
u8 retVal = FALSE;
u16 val = ++gUnknown_03006208;
if (val <= 4)
{
sub_8152A34(gUnknown_03006208 + 1, gRamSaveSectionLocations);
sub_8152D44(val, gRamSaveSectionLocations);
}
else
{
sub_8152D44(val, gRamSaveSectionLocations);
retVal = TRUE;
}
if (gDamagedSaveSectors)
DoSaveFailedScreen(1);
return retVal;
}
u8 Save_LoadGameData(u8 a1)
{
u8 result;
if (gFlashMemoryPresent != TRUE)
{
gSaveFileStatus = 4;
return 0xFF;
}
UpdateSaveAddresses();
switch (a1)
{
case 0:
default:
result = sub_8152DD0(0xFFFF, gRamSaveSectionLocations);
LoadSerializedGame();
gSaveFileStatus = result;
gGameContinueCallback = 0;
break;
case 3:
result = sub_81530DC(0x1C, gDecompressionBuffer, 0xF80);
if(result == 1)
result = sub_81530DC(0x1D, gDecompressionBuffer + 0xF80, 0xF80);
break;
}
return result;
}
u16 sub_815355C(void)
{
u16 i, v3;
struct SaveSection* savSection;
savSection = gFastSaveSection = &gSaveDataBuffer;
if (gFlashMemoryPresent != TRUE)
return 0;
UpdateSaveAddresses();
GetSaveValidStatus(gRamSaveSectionLocations);
v3 = 0xE * (gSaveCounter % 2);
for (i = 0; i < 14; i++)
{
DoReadFlashWholeSection(i + v3, gFastSaveSection);
if (gFastSaveSection->id == 0)
return savSection->data[10] +
savSection->data[11] +
savSection->data[12] +
savSection->data[13];
}
return 0;
}
u32 TryCopySpecialSaveSection(u8 sector, u8* dst)
{
s32 i;
s32 size;
u8* savData;
if (sector != 30 && sector != 31)
return 0xFF;
ReadFlash(sector, 0, (u8 *)&gSaveDataBuffer, sizeof(struct SaveSection));
if (*(u32*)(&gSaveDataBuffer.data[0]) != 0xB39D)
return 0xFF;
// copies whole save section except u32 counter
i = 0;
size = 0xFFB;
savData = &gSaveDataBuffer.data[4];
for (; i <= size; i++)
dst[i] = savData[i];
return 1;
}
u32 sub_8153634(u8 sector, u8* src)
{
s32 i;
s32 size;
u8* savData;
void* savDataBuffer;
if (sector != 30 && sector != 31)
return 0xFF;
savDataBuffer = &gSaveDataBuffer;
*(u32*)(savDataBuffer) = 0xB39D;
// copies whole save section except u32 counter
i = 0;
size = 0xFFB;
savData = &gSaveDataBuffer.data[4];
for (; i <= size; i++)
savData[i] = src[i];
if (ProgramFlashSectorAndVerify(sector, savDataBuffer) != 0)
return 0xFF;
return 1;
}
void sub_8153688(u8 taskId)
{
s16* taskData = gTasks[taskId].data;
switch (taskData[0])
{
case 0:
gSoftResetDisabled = TRUE;
taskData[0] = 1;
break;
case 1:
sub_800ADF8();
taskData[0] = 2;
break;
case 2:
if (sub_800A520())
{
if (taskData[2] == 0)
save_serialize_map();
taskData[0] = 3;
}
break;
case 3:
if (taskData[2] == 0)
sub_8076D5C();
sub_8153380();
taskData[0] = 4;
break;
case 4:
if (++taskData[1] == 5)
{
taskData[1] = 0;
taskData[0] = 5;
}
break;
case 5:
if (sub_81533AC())
taskData[0] = 6;
else
taskData[0] = 4;
break;
case 6:
sub_81533E0();
taskData[0] = 7;
break;
case 7:
if (taskData[2] == 0)
sav2_gender2_inplace_and_xFE();
sub_800ADF8();
taskData[0] = 8;
break;
case 8:
if (sub_800A520())
{
sub_8153408();
taskData[0] = 9;
}
break;
case 9:
sub_800ADF8();
taskData[0] = 10;
break;
case 10:
if (sub_800A520())
taskData[0]++;
break;
case 11:
if (++taskData[1] > 5)
{
gSoftResetDisabled = FALSE;
DestroyTask(taskId);
}
break;
}
}