pokeemerald/src/m4a.c
2022-07-29 10:17:58 -04:00

1762 lines
44 KiB
C

#include <string.h>
#include "gba/m4a_internal.h"
extern const u8 gCgb3Vol[];
#define BSS_CODE __attribute__((section(".bss.code")))
BSS_CODE ALIGNED(4) char SoundMainRAM_Buffer[0x800] = {0};
struct SoundInfo gSoundInfo;
struct PokemonCrySong gPokemonCrySongs[MAX_POKEMON_CRIES];
struct MusicPlayerInfo gPokemonCryMusicPlayers[MAX_POKEMON_CRIES];
MPlayFunc gMPlayJumpTable[36];
struct CgbChannel gCgbChans[4];
struct MusicPlayerTrack gPokemonCryTracks[MAX_POKEMON_CRIES * 2];
struct PokemonCrySong gPokemonCrySong;
struct MusicPlayerInfo gMPlayInfo_BGM;
struct MusicPlayerInfo gMPlayInfo_SE1;
struct MusicPlayerInfo gMPlayInfo_SE2;
struct MusicPlayerInfo gMPlayInfo_SE3;
u8 gMPlayMemAccArea[0x10];
u32 MidiKeyToFreq(struct WaveData *wav, u8 key, u8 fineAdjust)
{
u32 val1;
u32 val2;
u32 fineAdjustShifted = fineAdjust << 24;
if (key > 178)
{
key = 178;
fineAdjustShifted = 255 << 24;
}
val1 = gScaleTable[key];
val1 = gFreqTable[val1 & 0xF] >> (val1 >> 4);
val2 = gScaleTable[key + 1];
val2 = gFreqTable[val2 & 0xF] >> (val2 >> 4);
return umul3232H32(wav->freq, val1 + umul3232H32(val2 - val1, fineAdjustShifted));
}
void UnusedDummyFunc(void)
{
}
void MPlayContinue(struct MusicPlayerInfo *mplayInfo)
{
if (mplayInfo->ident == ID_NUMBER)
{
mplayInfo->ident++;
mplayInfo->status &= ~MUSICPLAYER_STATUS_PAUSE;
mplayInfo->ident = ID_NUMBER;
}
}
void MPlayFadeOut(struct MusicPlayerInfo *mplayInfo, u16 speed)
{
if (mplayInfo->ident == ID_NUMBER)
{
mplayInfo->ident++;
mplayInfo->fadeOC = speed;
mplayInfo->fadeOI = speed;
mplayInfo->fadeOV = (64 << FADE_VOL_SHIFT);
mplayInfo->ident = ID_NUMBER;
}
}
void m4aSoundInit(void)
{
s32 i;
CpuCopy32((void *)((s32)SoundMainRAM & ~1), SoundMainRAM_Buffer, sizeof(SoundMainRAM_Buffer));
SoundInit(&gSoundInfo);
MPlayExtender(gCgbChans);
m4aSoundMode(SOUND_MODE_DA_BIT_8
| SOUND_MODE_FREQ_13379
| (12 << SOUND_MODE_MASVOL_SHIFT)
| (5 << SOUND_MODE_MAXCHN_SHIFT));
for (i = 0; i < NUM_MUSIC_PLAYERS; i++)
{
struct MusicPlayerInfo *mplayInfo = gMPlayTable[i].info;
MPlayOpen(mplayInfo, gMPlayTable[i].track, gMPlayTable[i].numTracks);
mplayInfo->unk_B = gMPlayTable[i].unk_A;
mplayInfo->memAccArea = gMPlayMemAccArea;
}
memcpy(&gPokemonCrySong, &gPokemonCrySongTemplate, sizeof(struct PokemonCrySong));
for (i = 0; i < MAX_POKEMON_CRIES; i++)
{
struct MusicPlayerInfo *mplayInfo = &gPokemonCryMusicPlayers[i];
struct MusicPlayerTrack *track = &gPokemonCryTracks[i * 2];
MPlayOpen(mplayInfo, track, 2);
track->chan = 0;
}
}
void m4aSoundMain(void)
{
SoundMain();
}
void m4aSongNumStart(u16 n)
{
const struct MusicPlayer *mplayTable = gMPlayTable;
const struct Song *songTable = gSongTable;
const struct Song *song = &songTable[n];
const struct MusicPlayer *mplay = &mplayTable[song->ms];
MPlayStart(mplay->info, song->header);
}
void m4aSongNumStartOrChange(u16 n)
{
const struct MusicPlayer *mplayTable = gMPlayTable;
const struct Song *songTable = gSongTable;
const struct Song *song = &songTable[n];
const struct MusicPlayer *mplay = &mplayTable[song->ms];
if (mplay->info->songHeader != song->header)
{
MPlayStart(mplay->info, song->header);
}
else
{
if ((mplay->info->status & MUSICPLAYER_STATUS_TRACK) == 0
|| (mplay->info->status & MUSICPLAYER_STATUS_PAUSE))
{
MPlayStart(mplay->info, song->header);
}
}
}
void m4aSongNumStartOrContinue(u16 n)
{
const struct MusicPlayer *mplayTable = gMPlayTable;
const struct Song *songTable = gSongTable;
const struct Song *song = &songTable[n];
const struct MusicPlayer *mplay = &mplayTable[song->ms];
if (mplay->info->songHeader != song->header)
MPlayStart(mplay->info, song->header);
else if ((mplay->info->status & MUSICPLAYER_STATUS_TRACK) == 0)
MPlayStart(mplay->info, song->header);
else if (mplay->info->status & MUSICPLAYER_STATUS_PAUSE)
MPlayContinue(mplay->info);
}
void m4aSongNumStop(u16 n)
{
const struct MusicPlayer *mplayTable = gMPlayTable;
const struct Song *songTable = gSongTable;
const struct Song *song = &songTable[n];
const struct MusicPlayer *mplay = &mplayTable[song->ms];
if (mplay->info->songHeader == song->header)
m4aMPlayStop(mplay->info);
}
void m4aSongNumContinue(u16 n)
{
const struct MusicPlayer *mplayTable = gMPlayTable;
const struct Song *songTable = gSongTable;
const struct Song *song = &songTable[n];
const struct MusicPlayer *mplay = &mplayTable[song->ms];
if (mplay->info->songHeader == song->header)
MPlayContinue(mplay->info);
}
void m4aMPlayAllStop(void)
{
s32 i;
for (i = 0; i < NUM_MUSIC_PLAYERS; i++)
m4aMPlayStop(gMPlayTable[i].info);
for (i = 0; i < MAX_POKEMON_CRIES; i++)
m4aMPlayStop(&gPokemonCryMusicPlayers[i]);
}
void m4aMPlayContinue(struct MusicPlayerInfo *mplayInfo)
{
MPlayContinue(mplayInfo);
}
void m4aMPlayAllContinue(void)
{
s32 i;
for (i = 0; i < NUM_MUSIC_PLAYERS; i++)
MPlayContinue(gMPlayTable[i].info);
for (i = 0; i < MAX_POKEMON_CRIES; i++)
MPlayContinue(&gPokemonCryMusicPlayers[i]);
}
void m4aMPlayFadeOut(struct MusicPlayerInfo *mplayInfo, u16 speed)
{
MPlayFadeOut(mplayInfo, speed);
}
void m4aMPlayFadeOutTemporarily(struct MusicPlayerInfo *mplayInfo, u16 speed)
{
if (mplayInfo->ident == ID_NUMBER)
{
mplayInfo->ident++;
mplayInfo->fadeOC = speed;
mplayInfo->fadeOI = speed;
mplayInfo->fadeOV = (64 << FADE_VOL_SHIFT) | TEMPORARY_FADE;
mplayInfo->ident = ID_NUMBER;
}
}
void m4aMPlayFadeIn(struct MusicPlayerInfo *mplayInfo, u16 speed)
{
if (mplayInfo->ident == ID_NUMBER)
{
mplayInfo->ident++;
mplayInfo->fadeOC = speed;
mplayInfo->fadeOI = speed;
mplayInfo->fadeOV = (0 << FADE_VOL_SHIFT) | FADE_IN;
mplayInfo->status &= ~MUSICPLAYER_STATUS_PAUSE;
mplayInfo->ident = ID_NUMBER;
}
}
void m4aMPlayImmInit(struct MusicPlayerInfo *mplayInfo)
{
s32 trackCount = mplayInfo->trackCount;
struct MusicPlayerTrack *track = mplayInfo->tracks;
while (trackCount > 0)
{
if (track->flags & MPT_FLG_EXIST)
{
if (track->flags & MPT_FLG_START)
{
Clear64byte(track);
track->flags = MPT_FLG_EXIST;
track->bendRange = 2;
track->volX = 64;
track->lfoSpeed = 22;
track->tone.type = 1;
}
}
trackCount--;
track++;
}
}
void MPlayExtender(struct CgbChannel *cgbChans)
{
struct SoundInfo *soundInfo;
u32 ident;
REG_SOUNDCNT_X = SOUND_MASTER_ENABLE
| SOUND_4_ON
| SOUND_3_ON
| SOUND_2_ON
| SOUND_1_ON;
REG_SOUNDCNT_L = 0; // set master volume to zero
REG_NR12 = 0x8;
REG_NR22 = 0x8;
REG_NR42 = 0x8;
REG_NR14 = 0x80;
REG_NR24 = 0x80;
REG_NR44 = 0x80;
REG_NR30 = 0;
REG_NR50 = 0x77;
soundInfo = SOUND_INFO_PTR;
ident = soundInfo->ident;
if (ident != ID_NUMBER)
return;
soundInfo->ident++;
gMPlayJumpTable[8] = ply_memacc;
gMPlayJumpTable[17] = ply_lfos;
gMPlayJumpTable[19] = ply_mod;
gMPlayJumpTable[28] = ply_xcmd;
gMPlayJumpTable[29] = ply_endtie;
gMPlayJumpTable[30] = SampleFreqSet;
gMPlayJumpTable[31] = TrackStop;
gMPlayJumpTable[32] = FadeOutBody;
gMPlayJumpTable[33] = TrkVolPitSet;
soundInfo->cgbChans = cgbChans;
soundInfo->CgbSound = CgbSound;
soundInfo->CgbOscOff = CgbOscOff;
soundInfo->MidiKeyToCgbFreq = MidiKeyToCgbFreq;
soundInfo->maxLines = MAX_LINES;
CpuFill32(0, cgbChans, sizeof(struct CgbChannel) * 4);
cgbChans[0].type = 1;
cgbChans[0].panMask = 0x11;
cgbChans[1].type = 2;
cgbChans[1].panMask = 0x22;
cgbChans[2].type = 3;
cgbChans[2].panMask = 0x44;
cgbChans[3].type = 4;
cgbChans[3].panMask = 0x88;
soundInfo->ident = ident;
}
void MusicPlayerJumpTableCopy(void)
{
asm("swi 0x2A");
}
void ClearChain(void *x)
{
void (*func)(void *) = *(&gMPlayJumpTable[34]);
func(x);
}
void Clear64byte(void *x)
{
void (*func)(void *) = *(&gMPlayJumpTable[35]);
func(x);
}
void SoundInit(struct SoundInfo *soundInfo)
{
soundInfo->ident = 0;
if (REG_DMA1CNT & (DMA_REPEAT << 16))
REG_DMA1CNT = ((DMA_ENABLE | DMA_START_NOW | DMA_32BIT | DMA_SRC_INC | DMA_DEST_FIXED) << 16) | 4;
if (REG_DMA2CNT & (DMA_REPEAT << 16))
REG_DMA2CNT = ((DMA_ENABLE | DMA_START_NOW | DMA_32BIT | DMA_SRC_INC | DMA_DEST_FIXED) << 16) | 4;
REG_DMA1CNT_H = DMA_32BIT;
REG_DMA2CNT_H = DMA_32BIT;
REG_SOUNDCNT_X = SOUND_MASTER_ENABLE
| SOUND_4_ON
| SOUND_3_ON
| SOUND_2_ON
| SOUND_1_ON;
REG_SOUNDCNT_H = SOUND_B_FIFO_RESET | SOUND_B_TIMER_0 | SOUND_B_LEFT_OUTPUT
| SOUND_A_FIFO_RESET | SOUND_A_TIMER_0 | SOUND_A_RIGHT_OUTPUT
| SOUND_ALL_MIX_FULL;
REG_SOUNDBIAS_H = (REG_SOUNDBIAS_H & 0x3F) | 0x40;
REG_DMA1SAD = (s32)soundInfo->pcmBuffer;
REG_DMA1DAD = (s32)&REG_FIFO_A;
REG_DMA2SAD = (s32)soundInfo->pcmBuffer + PCM_DMA_BUF_SIZE;
REG_DMA2DAD = (s32)&REG_FIFO_B;
SOUND_INFO_PTR = soundInfo;
CpuFill32(0, soundInfo, sizeof(struct SoundInfo));
soundInfo->maxChans = 8;
soundInfo->masterVolume = 15;
soundInfo->plynote = ply_note;
soundInfo->CgbSound = DummyFunc;
soundInfo->CgbOscOff = (CgbOscOffFunc)DummyFunc;
soundInfo->MidiKeyToCgbFreq = (MidiKeyToCgbFreqFunc)DummyFunc;
soundInfo->ExtVolPit = (ExtVolPitFunc)DummyFunc;
MPlayJumpTableCopy(gMPlayJumpTable);
soundInfo->MPlayJumpTable = gMPlayJumpTable;
SampleFreqSet(SOUND_MODE_FREQ_13379);
soundInfo->ident = ID_NUMBER;
}
void SampleFreqSet(u32 freq)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
freq = (freq & 0xF0000) >> 16;
soundInfo->freq = freq;
soundInfo->pcmSamplesPerVBlank = gPcmSamplesPerVBlankTable[freq - 1];
soundInfo->pcmDmaPeriod = PCM_DMA_BUF_SIZE / soundInfo->pcmSamplesPerVBlank;
// LCD refresh rate 59.7275Hz
soundInfo->pcmFreq = (597275 * soundInfo->pcmSamplesPerVBlank + 5000) / 10000;
// CPU frequency 16.78Mhz
soundInfo->divFreq = (16777216 / soundInfo->pcmFreq + 1) >> 1;
// Turn off timer 0.
REG_TM0CNT_H = 0;
// cycles per LCD fresh 280896
REG_TM0CNT_L = -(280896 / soundInfo->pcmSamplesPerVBlank);
m4aSoundVSyncOn();
while (*(vu8 *)REG_ADDR_VCOUNT == 159)
;
while (*(vu8 *)REG_ADDR_VCOUNT != 159)
;
REG_TM0CNT_H = TIMER_ENABLE | TIMER_1CLK;
}
void m4aSoundMode(u32 mode)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
u32 temp;
if (soundInfo->ident != ID_NUMBER)
return;
soundInfo->ident++;
temp = mode & (SOUND_MODE_REVERB_SET | SOUND_MODE_REVERB_VAL);
if (temp)
soundInfo->reverb = temp & SOUND_MODE_REVERB_VAL;
temp = mode & SOUND_MODE_MAXCHN;
if (temp)
{
struct SoundChannel *chan;
soundInfo->maxChans = temp >> SOUND_MODE_MAXCHN_SHIFT;
temp = MAX_DIRECTSOUND_CHANNELS;
chan = &soundInfo->chans[0];
while (temp != 0)
{
chan->statusFlags = 0;
temp--;
chan++;
}
}
temp = mode & SOUND_MODE_MASVOL;
if (temp)
soundInfo->masterVolume = temp >> SOUND_MODE_MASVOL_SHIFT;
temp = mode & SOUND_MODE_DA_BIT;
if (temp)
{
temp = (temp & 0x300000) >> 14;
REG_SOUNDBIAS_H = (REG_SOUNDBIAS_H & 0x3F) | temp;
}
temp = mode & SOUND_MODE_FREQ;
if (temp)
{
m4aSoundVSyncOff();
SampleFreqSet(temp);
}
soundInfo->ident = ID_NUMBER;
}
void SoundClear(void)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
s32 i;
void *chan;
if (soundInfo->ident != ID_NUMBER)
return;
soundInfo->ident++;
i = MAX_DIRECTSOUND_CHANNELS;
chan = &soundInfo->chans[0];
while (i > 0)
{
((struct SoundChannel *)chan)->statusFlags = 0;
i--;
chan = (void *)((s32)chan + sizeof(struct SoundChannel));
}
chan = soundInfo->cgbChans;
if (chan)
{
i = 1;
while (i <= 4)
{
soundInfo->CgbOscOff(i);
((struct CgbChannel *)chan)->statusFlags = 0;
i++;
chan = (void *)((s32)chan + sizeof(struct CgbChannel));
}
}
soundInfo->ident = ID_NUMBER;
}
void m4aSoundVSyncOff(void)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
if (soundInfo->ident >= ID_NUMBER && soundInfo->ident <= ID_NUMBER + 1)
{
soundInfo->ident += 10;
if (REG_DMA1CNT & (DMA_REPEAT << 16))
REG_DMA1CNT = ((DMA_ENABLE | DMA_START_NOW | DMA_32BIT | DMA_SRC_INC | DMA_DEST_FIXED) << 16) | 4;
if (REG_DMA2CNT & (DMA_REPEAT << 16))
REG_DMA2CNT = ((DMA_ENABLE | DMA_START_NOW | DMA_32BIT | DMA_SRC_INC | DMA_DEST_FIXED) << 16) | 4;
REG_DMA1CNT_H = DMA_32BIT;
REG_DMA2CNT_H = DMA_32BIT;
CpuFill32(0, soundInfo->pcmBuffer, sizeof(soundInfo->pcmBuffer));
}
}
void m4aSoundVSyncOn(void)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
u32 ident = soundInfo->ident;
if (ident == ID_NUMBER)
return;
REG_DMA1CNT_H = DMA_ENABLE | DMA_START_SPECIAL | DMA_32BIT | DMA_REPEAT;
REG_DMA2CNT_H = DMA_ENABLE | DMA_START_SPECIAL | DMA_32BIT | DMA_REPEAT;
soundInfo->pcmDmaCounter = 0;
soundInfo->ident = ident - 10;
}
void MPlayOpen(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *tracks, u8 trackCount)
{
struct SoundInfo *soundInfo;
if (trackCount == 0)
return;
if (trackCount > MAX_MUSICPLAYER_TRACKS)
trackCount = MAX_MUSICPLAYER_TRACKS;
soundInfo = SOUND_INFO_PTR;
if (soundInfo->ident != ID_NUMBER)
return;
soundInfo->ident++;
Clear64byte(mplayInfo);
mplayInfo->tracks = tracks;
mplayInfo->trackCount = trackCount;
mplayInfo->status = MUSICPLAYER_STATUS_PAUSE;
while (trackCount != 0)
{
tracks->flags = 0;
trackCount--;
tracks++;
}
// append music player and MPlayMain to linked list
if (soundInfo->MPlayMainHead != NULL)
{
mplayInfo->MPlayMainNext = soundInfo->MPlayMainHead;
mplayInfo->musicPlayerNext = soundInfo->musicPlayerHead;
// NULL assignment semantically useless, but required for match
soundInfo->MPlayMainHead = NULL;
}
soundInfo->musicPlayerHead = mplayInfo;
soundInfo->MPlayMainHead = MPlayMain;
soundInfo->ident = ID_NUMBER;
mplayInfo->ident = ID_NUMBER;
}
void MPlayStart(struct MusicPlayerInfo *mplayInfo, struct SongHeader *songHeader)
{
s32 i;
u8 unk_B;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
unk_B = mplayInfo->unk_B;
if (!unk_B
|| ((!mplayInfo->songHeader || !(mplayInfo->tracks[0].flags & MPT_FLG_START))
&& ((mplayInfo->status & MUSICPLAYER_STATUS_TRACK) == 0
|| (mplayInfo->status & MUSICPLAYER_STATUS_PAUSE)))
|| (mplayInfo->priority <= songHeader->priority))
{
mplayInfo->ident++;
mplayInfo->status = 0;
mplayInfo->songHeader = songHeader;
mplayInfo->tone = songHeader->tone;
mplayInfo->priority = songHeader->priority;
mplayInfo->clock = 0;
mplayInfo->tempoD = 150;
mplayInfo->tempoI = 150;
mplayInfo->tempoU = 0x100;
mplayInfo->tempoC = 0;
mplayInfo->fadeOI = 0;
i = 0;
track = mplayInfo->tracks;
while (i < songHeader->trackCount && i < mplayInfo->trackCount)
{
TrackStop(mplayInfo, track);
track->flags = MPT_FLG_EXIST | MPT_FLG_START;
track->chan = 0;
track->cmdPtr = songHeader->part[i];
i++;
track++;
}
while (i < mplayInfo->trackCount)
{
TrackStop(mplayInfo, track);
track->flags = 0;
i++;
track++;
}
if (songHeader->reverb & SOUND_MODE_REVERB_SET)
m4aSoundMode(songHeader->reverb);
mplayInfo->ident = ID_NUMBER;
}
}
void m4aMPlayStop(struct MusicPlayerInfo *mplayInfo)
{
s32 i;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
mplayInfo->ident++;
mplayInfo->status |= MUSICPLAYER_STATUS_PAUSE;
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
while (i > 0)
{
TrackStop(mplayInfo, track);
i--;
track++;
}
mplayInfo->ident = ID_NUMBER;
}
void FadeOutBody(struct MusicPlayerInfo *mplayInfo)
{
s32 i;
struct MusicPlayerTrack *track;
u16 fadeOV;
if (mplayInfo->fadeOI == 0)
return;
if (--mplayInfo->fadeOC != 0)
return;
mplayInfo->fadeOC = mplayInfo->fadeOI;
if (mplayInfo->fadeOV & FADE_IN)
{
if ((u16)(mplayInfo->fadeOV += (4 << FADE_VOL_SHIFT)) >= (64 << FADE_VOL_SHIFT))
{
mplayInfo->fadeOV = (64 << FADE_VOL_SHIFT);
mplayInfo->fadeOI = 0;
}
}
else
{
if ((s16)(mplayInfo->fadeOV -= (4 << FADE_VOL_SHIFT)) <= 0)
{
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
while (i > 0)
{
u32 val;
TrackStop(mplayInfo, track);
val = TEMPORARY_FADE;
fadeOV = mplayInfo->fadeOV;
val &= fadeOV;
if (!val)
track->flags = 0;
i--;
track++;
}
if (mplayInfo->fadeOV & TEMPORARY_FADE)
mplayInfo->status |= MUSICPLAYER_STATUS_PAUSE;
else
mplayInfo->status = MUSICPLAYER_STATUS_PAUSE;
mplayInfo->fadeOI = 0;
return;
}
}
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
while (i > 0)
{
if (track->flags & MPT_FLG_EXIST)
{
fadeOV = mplayInfo->fadeOV;
track->volX = (fadeOV >> FADE_VOL_SHIFT);
track->flags |= MPT_FLG_VOLCHG;
}
i--;
track++;
}
}
void TrkVolPitSet(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
if (track->flags & MPT_FLG_VOLSET)
{
s32 x;
s32 y;
x = (u32)(track->vol * track->volX) >> 5;
if (track->modT == 1)
x = (u32)(x * (track->modM + 128)) >> 7;
y = 2 * track->pan + track->panX;
if (track->modT == 2)
y += track->modM;
if (y < -128)
y = -128;
else if (y > 127)
y = 127;
track->volMR = (u32)((y + 128) * x) >> 8;
track->volML = (u32)((127 - y) * x) >> 8;
}
if (track->flags & MPT_FLG_PITSET)
{
s32 bend = track->bend * track->bendRange;
s32 x = (track->tune + bend)
* 4
+ (track->keyShift << 8)
+ (track->keyShiftX << 8)
+ track->pitX;
if (track->modT == 0)
x += 16 * track->modM;
track->keyM = x >> 8;
track->pitM = x;
}
track->flags &= ~(MPT_FLG_PITSET | MPT_FLG_VOLSET);
}
u32 MidiKeyToCgbFreq(u8 chanNum, u8 key, u8 fineAdjust)
{
if (chanNum == 4)
{
if (key <= 20)
{
key = 0;
}
else
{
key -= 21;
if (key > 59)
key = 59;
}
return gNoiseTable[key];
}
else
{
s32 val1;
s32 val2;
if (key <= 35)
{
fineAdjust = 0;
key = 0;
}
else
{
key -= 36;
if (key > 130)
{
key = 130;
fineAdjust = 255;
}
}
val1 = gCgbScaleTable[key];
val1 = gCgbFreqTable[val1 & 0xF] >> (val1 >> 4);
val2 = gCgbScaleTable[key + 1];
val2 = gCgbFreqTable[val2 & 0xF] >> (val2 >> 4);
return val1 + ((fineAdjust * (val2 - val1)) >> 8) + 2048;
}
}
void CgbOscOff(u8 chanNum)
{
switch (chanNum)
{
case 1:
REG_NR12 = 8;
REG_NR14 = 0x80;
break;
case 2:
REG_NR22 = 8;
REG_NR24 = 0x80;
break;
case 3:
REG_NR30 = 0;
break;
default:
REG_NR42 = 8;
REG_NR44 = 0x80;
}
}
static inline int CgbPan(struct CgbChannel *chan)
{
u32 rightVolume = chan->rightVolume;
u32 leftVolume = chan->leftVolume;
if ((rightVolume = (u8)rightVolume) >= (leftVolume = (u8)leftVolume))
{
if (rightVolume / 2 >= leftVolume)
{
chan->pan = 0x0F;
return 1;
}
}
else
{
if (leftVolume / 2 >= rightVolume)
{
chan->pan = 0xF0;
return 1;
}
}
return 0;
}
void CgbModVol(struct CgbChannel *chan)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
if ((soundInfo->mode & 1) || !CgbPan(chan))
{
chan->pan = 0xFF;
chan->envelopeGoal = (u32)(chan->leftVolume + chan->rightVolume);
chan->envelopeGoal /= 16;
}
else
{
chan->envelopeGoal = (u32)(chan->leftVolume + chan->rightVolume);
chan->envelopeGoal /= 16;
if (chan->envelopeGoal > 15)
chan->envelopeGoal = 15;
}
chan->sustainGoal = (chan->envelopeGoal * chan->sustain + 15) >> 4;
chan->pan &= chan->panMask;
}
void CgbSound(void)
{
s32 ch;
struct CgbChannel *channels;
s32 prevC15;
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
vu8 *nrx0ptr;
vu8 *nrx1ptr;
vu8 *nrx2ptr;
vu8 *nrx3ptr;
vu8 *nrx4ptr;
s32 envelopeStepTimeAndDir;
// Most comparision operations that cast to s8 perform 'and' by 0xFF.
int mask = 0xff;
if (soundInfo->c15)
soundInfo->c15--;
else
soundInfo->c15 = 14;
for (ch = 1, channels = soundInfo->cgbChans; ch <= 4; ch++, channels++)
{
if (!(channels->statusFlags & SOUND_CHANNEL_SF_ON))
continue;
/* 1. determine hardware channel registers */
switch (ch)
{
case 1:
nrx0ptr = (vu8 *)(REG_ADDR_NR10);
nrx1ptr = (vu8 *)(REG_ADDR_NR11);
nrx2ptr = (vu8 *)(REG_ADDR_NR12);
nrx3ptr = (vu8 *)(REG_ADDR_NR13);
nrx4ptr = (vu8 *)(REG_ADDR_NR14);
break;
case 2:
nrx0ptr = (vu8 *)(REG_ADDR_NR10+1);
nrx1ptr = (vu8 *)(REG_ADDR_NR21);
nrx2ptr = (vu8 *)(REG_ADDR_NR22);
nrx3ptr = (vu8 *)(REG_ADDR_NR23);
nrx4ptr = (vu8 *)(REG_ADDR_NR24);
break;
case 3:
nrx0ptr = (vu8 *)(REG_ADDR_NR30);
nrx1ptr = (vu8 *)(REG_ADDR_NR31);
nrx2ptr = (vu8 *)(REG_ADDR_NR32);
nrx3ptr = (vu8 *)(REG_ADDR_NR33);
nrx4ptr = (vu8 *)(REG_ADDR_NR34);
break;
default:
nrx0ptr = (vu8 *)(REG_ADDR_NR30+1);
nrx1ptr = (vu8 *)(REG_ADDR_NR41);
nrx2ptr = (vu8 *)(REG_ADDR_NR42);
nrx3ptr = (vu8 *)(REG_ADDR_NR43);
nrx4ptr = (vu8 *)(REG_ADDR_NR44);
break;
}
prevC15 = soundInfo->c15;
envelopeStepTimeAndDir = *nrx2ptr;
/* 2. calculate envelope volume */
if (channels->statusFlags & SOUND_CHANNEL_SF_START)
{
if (!(channels->statusFlags & SOUND_CHANNEL_SF_STOP))
{
channels->statusFlags = SOUND_CHANNEL_SF_ENV_ATTACK;
channels->modify = CGB_CHANNEL_MO_PIT | CGB_CHANNEL_MO_VOL;
CgbModVol(channels);
switch (ch)
{
case 1:
*nrx0ptr = channels->sweep;
// fallthrough
case 2:
*nrx1ptr = ((u32)channels->wavePointer << 6) + channels->length;
goto init_env_step_time_dir;
case 3:
if (channels->wavePointer != channels->currentPointer)
{
*nrx0ptr = 0x40;
REG_WAVE_RAM0 = channels->wavePointer[0];
REG_WAVE_RAM1 = channels->wavePointer[1];
REG_WAVE_RAM2 = channels->wavePointer[2];
REG_WAVE_RAM3 = channels->wavePointer[3];
channels->currentPointer = channels->wavePointer;
}
*nrx0ptr = 0;
*nrx1ptr = channels->length;
if (channels->length)
channels->n4 = 0xC0;
else
channels->n4 = 0x80;
break;
default:
*nrx1ptr = channels->length;
*nrx3ptr = (u32)channels->wavePointer << 3;
init_env_step_time_dir:
envelopeStepTimeAndDir = channels->attack + CGB_NRx2_ENV_DIR_INC;
if (channels->length)
channels->n4 = 0x40;
else
channels->n4 = 0x00;
break;
}
channels->envelopeCounter = channels->attack;
if ((s8)(channels->attack & mask))
{
channels->envelopeVolume = 0;
goto envelope_step_complete;
}
else
{
// skip attack phase if attack is instantaneous (=0)
goto envelope_decay_start;
}
}
else
{
goto oscillator_off;
}
}
else if (channels->statusFlags & SOUND_CHANNEL_SF_IEC)
{
channels->pseudoEchoLength--;
if ((s8)(channels->pseudoEchoLength & mask) <= 0)
{
oscillator_off:
CgbOscOff(ch);
channels->statusFlags = 0;
goto channel_complete;
}
goto envelope_complete;
}
else if ((channels->statusFlags & SOUND_CHANNEL_SF_STOP) && (channels->statusFlags & SOUND_CHANNEL_SF_ENV))
{
channels->statusFlags &= ~SOUND_CHANNEL_SF_ENV;
channels->envelopeCounter = channels->release;
if ((s8)(channels->release & mask))
{
channels->modify |= CGB_CHANNEL_MO_VOL;
if (ch != 3)
envelopeStepTimeAndDir = channels->release | CGB_NRx2_ENV_DIR_DEC;
goto envelope_step_complete;
}
else
{
goto envelope_pseudoecho_start;
}
}
else
{
envelope_step_repeat:
if (channels->envelopeCounter == 0)
{
if (ch == 3)
channels->modify |= CGB_CHANNEL_MO_VOL;
CgbModVol(channels);
if ((channels->statusFlags & SOUND_CHANNEL_SF_ENV) == SOUND_CHANNEL_SF_ENV_RELEASE)
{
channels->envelopeVolume--;
if ((s8)(channels->envelopeVolume & mask) <= 0)
{
envelope_pseudoecho_start:
channels->envelopeVolume = ((channels->envelopeGoal * channels->pseudoEchoVolume) + 0xFF) >> 8;
if (channels->envelopeVolume)
{
channels->statusFlags |= SOUND_CHANNEL_SF_IEC;
channels->modify |= CGB_CHANNEL_MO_VOL;
if (ch != 3)
envelopeStepTimeAndDir = 0 | CGB_NRx2_ENV_DIR_INC;
goto envelope_complete;
}
else
{
goto oscillator_off;
}
}
else
{
channels->envelopeCounter = channels->release;
}
}
else if ((channels->statusFlags & SOUND_CHANNEL_SF_ENV) == SOUND_CHANNEL_SF_ENV_SUSTAIN)
{
envelope_sustain:
channels->envelopeVolume = channels->sustainGoal;
channels->envelopeCounter = 7;
}
else if ((channels->statusFlags & SOUND_CHANNEL_SF_ENV) == SOUND_CHANNEL_SF_ENV_DECAY)
{
int envelopeVolume, sustainGoal;
channels->envelopeVolume--;
envelopeVolume = (s8)(channels->envelopeVolume & mask);
sustainGoal = (s8)(channels->sustainGoal);
if (envelopeVolume <= sustainGoal)
{
envelope_sustain_start:
if (channels->sustain == 0)
{
channels->statusFlags &= ~SOUND_CHANNEL_SF_ENV;
goto envelope_pseudoecho_start;
}
else
{
channels->statusFlags--;
channels->modify |= CGB_CHANNEL_MO_VOL;
if (ch != 3)
envelopeStepTimeAndDir = 0 | CGB_NRx2_ENV_DIR_INC;
goto envelope_sustain;
}
}
else
{
channels->envelopeCounter = channels->decay;
}
}
else
{
channels->envelopeVolume++;
if ((u8)(channels->envelopeVolume & mask) >= channels->envelopeGoal)
{
envelope_decay_start:
channels->statusFlags--;
channels->envelopeCounter = channels->decay;
if ((u8)(channels->envelopeCounter & mask))
{
channels->modify |= CGB_CHANNEL_MO_VOL;
channels->envelopeVolume = channels->envelopeGoal;
if (ch != 3)
envelopeStepTimeAndDir = channels->decay | CGB_NRx2_ENV_DIR_DEC;
}
else
{
goto envelope_sustain_start;
}
}
else
{
channels->envelopeCounter = channels->attack;
}
}
}
}
envelope_step_complete:
// every 15 frames, envelope calculation has to be done twice
// to keep up with the hardware envelope rate (1/64 s)
channels->envelopeCounter--;
if (prevC15 == 0)
{
prevC15--;
goto envelope_step_repeat;
}
envelope_complete:
/* 3. apply pitch to HW registers */
if (channels->modify & CGB_CHANNEL_MO_PIT)
{
if (ch < 4 && (channels->type & TONEDATA_TYPE_FIX))
{
int dac_pwm_rate = REG_SOUNDBIAS_H;
if (dac_pwm_rate < 0x40) // if PWM rate = 32768 Hz
channels->frequency = (channels->frequency + 2) & 0x7fc;
else if (dac_pwm_rate < 0x80) // if PWM rate = 65536 Hz
channels->frequency = (channels->frequency + 1) & 0x7fe;
}
if (ch != 4)
*nrx3ptr = channels->frequency;
else
*nrx3ptr = (*nrx3ptr & 0x08) | channels->frequency;
channels->n4 = (channels->n4 & 0xC0) + (*((u8 *)(&channels->frequency) + 1));
*nrx4ptr = (s8)(channels->n4 & mask);
}
/* 4. apply envelope & volume to HW registers */
if (channels->modify & CGB_CHANNEL_MO_VOL)
{
REG_NR51 = (REG_NR51 & ~channels->panMask) | channels->pan;
if (ch == 3)
{
*nrx2ptr = gCgb3Vol[channels->envelopeVolume];
if (channels->n4 & 0x80)
{
*nrx0ptr = 0x80;
*nrx4ptr = channels->n4;
channels->n4 &= 0x7f;
}
}
else
{
u32 envMask = 0xF;
*nrx2ptr = (envelopeStepTimeAndDir & envMask) + (channels->envelopeVolume << 4);
*nrx4ptr = channels->n4 | 0x80;
if (ch == 1 && !(*nrx0ptr & 0x08))
*nrx4ptr = channels->n4 | 0x80;
}
}
channel_complete:
channels->modify = 0;
}
}
void m4aMPlayTempoControl(struct MusicPlayerInfo *mplayInfo, u16 tempo)
{
if (mplayInfo->ident == ID_NUMBER)
{
mplayInfo->ident++;
mplayInfo->tempoU = tempo;
mplayInfo->tempoI = (mplayInfo->tempoD * mplayInfo->tempoU) >> 8;
mplayInfo->ident = ID_NUMBER;
}
}
void m4aMPlayVolumeControl(struct MusicPlayerInfo *mplayInfo, u16 trackBits, u16 volume)
{
s32 i;
u32 bit;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
mplayInfo->ident++;
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
bit = 1;
while (i > 0)
{
if (trackBits & bit)
{
if (track->flags & MPT_FLG_EXIST)
{
track->volX = volume / 4;
track->flags |= MPT_FLG_VOLCHG;
}
}
i--;
track++;
bit <<= 1;
}
mplayInfo->ident = ID_NUMBER;
}
void m4aMPlayPitchControl(struct MusicPlayerInfo *mplayInfo, u16 trackBits, s16 pitch)
{
s32 i;
u32 bit;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
mplayInfo->ident++;
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
bit = 1;
while (i > 0)
{
if (trackBits & bit)
{
if (track->flags & MPT_FLG_EXIST)
{
track->keyShiftX = pitch >> 8;
track->pitX = pitch;
track->flags |= MPT_FLG_PITCHG;
}
}
i--;
track++;
bit <<= 1;
}
mplayInfo->ident = ID_NUMBER;
}
void m4aMPlayPanpotControl(struct MusicPlayerInfo *mplayInfo, u16 trackBits, s8 pan)
{
s32 i;
u32 bit;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
mplayInfo->ident++;
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
bit = 1;
while (i > 0)
{
if (trackBits & bit)
{
if (track->flags & MPT_FLG_EXIST)
{
track->panX = pan;
track->flags |= MPT_FLG_VOLCHG;
}
}
i--;
track++;
bit <<= 1;
}
mplayInfo->ident = ID_NUMBER;
}
void ClearModM(struct MusicPlayerTrack *track)
{
track->lfoSpeedC = 0;
track->modM = 0;
if (track->modT == 0)
track->flags |= MPT_FLG_PITCHG;
else
track->flags |= MPT_FLG_VOLCHG;
}
void m4aMPlayModDepthSet(struct MusicPlayerInfo *mplayInfo, u16 trackBits, u8 modDepth)
{
s32 i;
u32 bit;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
mplayInfo->ident++;
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
bit = 1;
while (i > 0)
{
if (trackBits & bit)
{
if (track->flags & MPT_FLG_EXIST)
{
track->mod = modDepth;
if (!track->mod)
ClearModM(track);
}
}
i--;
track++;
bit <<= 1;
}
mplayInfo->ident = ID_NUMBER;
}
void m4aMPlayLFOSpeedSet(struct MusicPlayerInfo *mplayInfo, u16 trackBits, u8 lfoSpeed)
{
s32 i;
u32 bit;
struct MusicPlayerTrack *track;
if (mplayInfo->ident != ID_NUMBER)
return;
mplayInfo->ident++;
i = mplayInfo->trackCount;
track = mplayInfo->tracks;
bit = 1;
while (i > 0)
{
if (trackBits & bit)
{
if (track->flags & MPT_FLG_EXIST)
{
track->lfoSpeed = lfoSpeed;
if (!track->lfoSpeed)
ClearModM(track);
}
}
i--;
track++;
bit <<= 1;
}
mplayInfo->ident = ID_NUMBER;
}
#define MEMACC_COND_JUMP(cond) \
if (cond) \
goto cond_true; \
else \
goto cond_false; \
void ply_memacc(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
u32 op;
u8 *addr;
u8 data;
op = *track->cmdPtr;
track->cmdPtr++;
addr = mplayInfo->memAccArea + *track->cmdPtr;
track->cmdPtr++;
data = *track->cmdPtr;
track->cmdPtr++;
switch (op)
{
case 0:
*addr = data;
return;
case 1:
*addr += data;
return;
case 2:
*addr -= data;
return;
case 3:
*addr = mplayInfo->memAccArea[data];
return;
case 4:
*addr += mplayInfo->memAccArea[data];
return;
case 5:
*addr -= mplayInfo->memAccArea[data];
return;
case 6:
MEMACC_COND_JUMP(*addr == data)
return;
case 7:
MEMACC_COND_JUMP(*addr != data)
return;
case 8:
MEMACC_COND_JUMP(*addr > data)
return;
case 9:
MEMACC_COND_JUMP(*addr >= data)
return;
case 10:
MEMACC_COND_JUMP(*addr <= data)
return;
case 11:
MEMACC_COND_JUMP(*addr < data)
return;
case 12:
MEMACC_COND_JUMP(*addr == mplayInfo->memAccArea[data])
return;
case 13:
MEMACC_COND_JUMP(*addr != mplayInfo->memAccArea[data])
return;
case 14:
MEMACC_COND_JUMP(*addr > mplayInfo->memAccArea[data])
return;
case 15:
MEMACC_COND_JUMP(*addr >= mplayInfo->memAccArea[data])
return;
case 16:
MEMACC_COND_JUMP(*addr <= mplayInfo->memAccArea[data])
return;
case 17:
MEMACC_COND_JUMP(*addr < mplayInfo->memAccArea[data])
return;
default:
return;
}
cond_true:
{
// *& is required for matching
(*&gMPlayJumpTable[1])(mplayInfo, track);
return;
}
cond_false:
track->cmdPtr += 4;
}
void ply_xcmd(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
u32 n = *track->cmdPtr;
track->cmdPtr++;
gXcmdTable[n](mplayInfo, track);
}
void ply_xxx(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
gMPlayJumpTable[0](mplayInfo, track);
}
#define READ_XCMD_BYTE(var, n) \
{ \
u32 byte = track->cmdPtr[(n)]; \
byte <<= n * 8; \
(var) &= ~(0xFF << (n * 8)); \
(var) |= byte; \
}
void ply_xwave(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
u32 wav;
#ifdef UBFIX
wav = 0;
#endif
READ_XCMD_BYTE(wav, 0) // UB: uninitialized variable
READ_XCMD_BYTE(wav, 1)
READ_XCMD_BYTE(wav, 2)
READ_XCMD_BYTE(wav, 3)
track->tone.wav = (struct WaveData *)wav;
track->cmdPtr += 4;
}
void ply_xtype(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.type = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xatta(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.attack = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xdeca(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.decay = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xsust(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.sustain = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xrele(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.release = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xiecv(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->pseudoEchoVolume = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xiecl(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->pseudoEchoLength = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xleng(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.length = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xswee(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
track->tone.pan_sweep = *track->cmdPtr;
track->cmdPtr++;
}
void ply_xcmd_0C(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
u32 unk;
#ifdef UBFIX
unk = 0;
#endif
READ_XCMD_BYTE(unk, 0) // UB: uninitialized variable
READ_XCMD_BYTE(unk, 1)
if (track->unk_3A < (u16)unk)
{
track->unk_3A++;
track->cmdPtr -= 2;
track->wait = 1;
}
else
{
track->unk_3A = 0;
track->cmdPtr += 2;
}
}
void ply_xcmd_0D(struct MusicPlayerInfo *mplayInfo, struct MusicPlayerTrack *track)
{
u32 unk;
#ifdef UBFIX
unk = 0;
#endif
READ_XCMD_BYTE(unk, 0) // UB: uninitialized variable
READ_XCMD_BYTE(unk, 1)
READ_XCMD_BYTE(unk, 2)
READ_XCMD_BYTE(unk, 3)
track->unk_3C = unk;
track->cmdPtr += 4;
}
void DummyFunc(void)
{
}
struct MusicPlayerInfo *SetPokemonCryTone(struct ToneData *tone)
{
u32 maxClock = 0;
s32 maxClockIndex = 0;
s32 i;
struct MusicPlayerInfo *mplayInfo;
for (i = 0; i < MAX_POKEMON_CRIES; i++)
{
struct MusicPlayerTrack *track = &gPokemonCryTracks[i * 2];
if (!track->flags && (!track->chan || track->chan->track != track))
goto start_song;
if (maxClock < gPokemonCryMusicPlayers[i].clock)
{
maxClock = gPokemonCryMusicPlayers[i].clock;
maxClockIndex = i;
}
}
i = maxClockIndex;
start_song:
mplayInfo = &gPokemonCryMusicPlayers[i];
mplayInfo->ident++;
gPokemonCrySongs[i] = gPokemonCrySong;
gPokemonCrySongs[i].tone = tone;
gPokemonCrySongs[i].part[0] = &gPokemonCrySongs[i].part0;
gPokemonCrySongs[i].part[1] = &gPokemonCrySongs[i].part1;
gPokemonCrySongs[i].gotoTarget = (u32)&gPokemonCrySongs[i].cont;
mplayInfo->ident = ID_NUMBER;
MPlayStart(mplayInfo, (struct SongHeader *)(&gPokemonCrySongs[i]));
return mplayInfo;
}
void SetPokemonCryVolume(u8 val)
{
gPokemonCrySong.volumeValue = val & 0x7F;
}
void SetPokemonCryPanpot(s8 val)
{
gPokemonCrySong.panValue = (val + C_V) & 0x7F;
}
void SetPokemonCryPitch(s16 val)
{
s16 b = val + 0x80;
u8 a = gPokemonCrySong.tuneValue2 - gPokemonCrySong.tuneValue;
gPokemonCrySong.tieKeyValue = (b >> 8) & 0x7F;
gPokemonCrySong.tuneValue = (b >> 1) & 0x7F;
gPokemonCrySong.tuneValue2 = (a + ((b >> 1) & 0x7F)) & 0x7F;
}
void SetPokemonCryLength(u16 val)
{
gPokemonCrySong.unkCmd0CParam = val;
}
void SetPokemonCryRelease(u8 val)
{
gPokemonCrySong.releaseValue = val;
}
void SetPokemonCryProgress(u32 val)
{
gPokemonCrySong.unkCmd0DParam = val;
}
bool32 IsPokemonCryPlaying(struct MusicPlayerInfo *mplayInfo)
{
struct MusicPlayerTrack *track = mplayInfo->tracks;
if (track->chan && track->chan->track == track)
return TRUE;
else
return FALSE;
}
void SetPokemonCryChorus(s8 val)
{
if (val)
{
gPokemonCrySong.trackCount = 2;
gPokemonCrySong.tuneValue2 = (val + gPokemonCrySong.tuneValue) & 0x7F;
}
else
{
gPokemonCrySong.trackCount = 1;
}
}
void SetPokemonCryStereo(u32 val)
{
struct SoundInfo *soundInfo = SOUND_INFO_PTR;
if (val)
{
REG_SOUNDCNT_H = SOUND_B_TIMER_0 | SOUND_B_LEFT_OUTPUT
| SOUND_A_TIMER_0 | SOUND_A_RIGHT_OUTPUT
| SOUND_ALL_MIX_FULL;
soundInfo->mode &= ~1;
}
else
{
REG_SOUNDCNT_H = SOUND_B_TIMER_0 | SOUND_B_LEFT_OUTPUT | SOUND_B_RIGHT_OUTPUT
| SOUND_A_TIMER_0 | SOUND_A_LEFT_OUTPUT | SOUND_A_RIGHT_OUTPUT
| SOUND_B_MIX_HALF | SOUND_A_MIX_HALF | SOUND_CGB_MIX_FULL;
soundInfo->mode |= 1;
}
}
void SetPokemonCryPriority(u8 val)
{
gPokemonCrySong.priority = val;
}