dolphin/Source/Core/VideoCommon/VertexShaderManager.cpp

736 lines
26 KiB
C++
Raw Normal View History

// Copyright 2008 Dolphin Emulator Project
2015-05-18 01:08:10 +02:00
// Licensed under GPLv2+
// Refer to the license.txt file included.
#include "VideoCommon/VertexShaderManager.h"
#include <array>
2014-12-04 15:15:16 +01:00
#include <cmath>
#include <cstring>
#include <iterator>
#include "Common/BitSet.h"
#include "Common/ChunkFile.h"
#include "Common/CommonTypes.h"
#include "Common/Logging/Log.h"
#include "Common/Matrix.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "VideoCommon/BPFunctions.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/VertexManagerBase.h"
#include "VideoCommon/VideoCommon.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
alignas(16) static std::array<float, 16> g_fProjectionMatrix;
// track changes
static bool bTexMatricesChanged[2], bPosNormalMatrixChanged, bProjectionChanged, bViewportChanged;
static bool bTexMtxInfoChanged, bLightingConfigChanged;
static BitSet32 nMaterialsChanged;
static int nTransformMatricesChanged[2]; // min,max
static int nNormalMatricesChanged[2]; // min,max
static int nPostTransformMatricesChanged[2]; // min,max
static int nLightsChanged[2]; // min,max
static Common::Matrix44 s_viewportCorrection;
static Common::Matrix44 s_freelook_matrix;
VertexShaderConstants VertexShaderManager::constants;
bool VertexShaderManager::dirty;
// Viewport correction:
// In D3D, the viewport rectangle must fit within the render target.
// Say you want a viewport at (ix, iy) with size (iw, ih),
// but your viewport must be clamped at (ax, ay) with size (aw, ah).
// Just multiply the projection matrix with the following to get the same
// effect:
// [ (iw/aw) 0 0 ((iw - 2*(ax-ix)) / aw - 1) ]
// [ 0 (ih/ah) 0 ((-ih + 2*(ay-iy)) / ah + 1) ]
// [ 0 0 1 0 ]
// [ 0 0 0 1 ]
static void ViewportCorrectionMatrix(Common::Matrix44& result)
{
int scissorXOff = bpmem.scissorOffset.x * 2;
int scissorYOff = bpmem.scissorOffset.y * 2;
// TODO: ceil, floor or just cast to int?
// TODO: Directly use the floats instead of rounding them?
float intendedX = xfmem.viewport.xOrig - xfmem.viewport.wd - scissorXOff;
float intendedY = xfmem.viewport.yOrig + xfmem.viewport.ht - scissorYOff;
float intendedWd = 2.0f * xfmem.viewport.wd;
float intendedHt = -2.0f * xfmem.viewport.ht;
if (intendedWd < 0.f)
{
intendedX += intendedWd;
intendedWd = -intendedWd;
}
if (intendedHt < 0.f)
{
intendedY += intendedHt;
intendedHt = -intendedHt;
}
// fit to EFB size
float X = (intendedX >= 0.f) ? intendedX : 0.f;
float Y = (intendedY >= 0.f) ? intendedY : 0.f;
float Wd = (X + intendedWd <= EFB_WIDTH) ? intendedWd : (EFB_WIDTH - X);
float Ht = (Y + intendedHt <= EFB_HEIGHT) ? intendedHt : (EFB_HEIGHT - Y);
result = Common::Matrix44::Identity();
if (Wd == 0 || Ht == 0)
return;
result.data[4 * 0 + 0] = intendedWd / Wd;
result.data[4 * 0 + 3] = (intendedWd - 2.f * (X - intendedX)) / Wd - 1.f;
result.data[4 * 1 + 1] = intendedHt / Ht;
result.data[4 * 1 + 3] = (-intendedHt + 2.f * (Y - intendedY)) / Ht + 1.f;
}
void VertexShaderManager::Init()
{
// Initialize state tracking variables
nTransformMatricesChanged[0] = -1;
nTransformMatricesChanged[1] = -1;
nNormalMatricesChanged[0] = -1;
nNormalMatricesChanged[1] = -1;
nPostTransformMatricesChanged[0] = -1;
nPostTransformMatricesChanged[1] = -1;
nLightsChanged[0] = -1;
nLightsChanged[1] = -1;
nMaterialsChanged = BitSet32(0);
bTexMatricesChanged[0] = false;
bTexMatricesChanged[1] = false;
bPosNormalMatrixChanged = false;
bProjectionChanged = true;
bViewportChanged = false;
bTexMtxInfoChanged = false;
bLightingConfigChanged = false;
std::memset(static_cast<void*>(&xfmem), 0, sizeof(xfmem));
constants = {};
ResetView();
// TODO: should these go inside ResetView()?
s_viewportCorrection = Common::Matrix44::Identity();
g_fProjectionMatrix = Common::Matrix44::Identity().data;
dirty = true;
}
void VertexShaderManager::Dirty()
{
// This function is called after a savestate is loaded.
// Any constants that can changed based on settings should be re-calculated
bProjectionChanged = true;
dirty = true;
}
// Syncs the shader constant buffers with xfmem
// TODO: A cleaner way to control the matrices without making a mess in the parameters field
void VertexShaderManager::SetConstants()
{
if (nTransformMatricesChanged[0] >= 0)
{
int startn = nTransformMatricesChanged[0] / 4;
int endn = (nTransformMatricesChanged[1] + 3) / 4;
memcpy(constants.transformmatrices[startn].data(), &xfmem.posMatrices[startn * 4],
(endn - startn) * sizeof(float4));
dirty = true;
nTransformMatricesChanged[0] = nTransformMatricesChanged[1] = -1;
}
if (nNormalMatricesChanged[0] >= 0)
{
int startn = nNormalMatricesChanged[0] / 3;
int endn = (nNormalMatricesChanged[1] + 2) / 3;
for (int i = startn; i < endn; i++)
{
memcpy(constants.normalmatrices[i].data(), &xfmem.normalMatrices[3 * i], 12);
}
dirty = true;
nNormalMatricesChanged[0] = nNormalMatricesChanged[1] = -1;
}
if (nPostTransformMatricesChanged[0] >= 0)
{
int startn = nPostTransformMatricesChanged[0] / 4;
int endn = (nPostTransformMatricesChanged[1] + 3) / 4;
memcpy(constants.posttransformmatrices[startn].data(), &xfmem.postMatrices[startn * 4],
(endn - startn) * sizeof(float4));
dirty = true;
nPostTransformMatricesChanged[0] = nPostTransformMatricesChanged[1] = -1;
}
if (nLightsChanged[0] >= 0)
{
// TODO: Outdated comment
// lights don't have a 1 to 1 mapping, the color component needs to be converted to 4 floats
int istart = nLightsChanged[0] / 0x10;
int iend = (nLightsChanged[1] + 15) / 0x10;
for (int i = istart; i < iend; ++i)
{
const Light& light = xfmem.lights[i];
VertexShaderConstants::Light& dstlight = constants.lights[i];
// xfmem.light.color is packed as abgr in u8[4], so we have to swap the order
dstlight.color[0] = light.color[3];
dstlight.color[1] = light.color[2];
dstlight.color[2] = light.color[1];
dstlight.color[3] = light.color[0];
dstlight.cosatt[0] = light.cosatt[0];
dstlight.cosatt[1] = light.cosatt[1];
dstlight.cosatt[2] = light.cosatt[2];
if (fabs(light.distatt[0]) < 0.00001f && fabs(light.distatt[1]) < 0.00001f &&
fabs(light.distatt[2]) < 0.00001f)
{
// dist attenuation, make sure not equal to 0!!!
dstlight.distatt[0] = .00001f;
}
else
{
dstlight.distatt[0] = light.distatt[0];
}
dstlight.distatt[1] = light.distatt[1];
dstlight.distatt[2] = light.distatt[2];
dstlight.pos[0] = light.dpos[0];
dstlight.pos[1] = light.dpos[1];
dstlight.pos[2] = light.dpos[2];
double norm = double(light.ddir[0]) * double(light.ddir[0]) +
double(light.ddir[1]) * double(light.ddir[1]) +
double(light.ddir[2]) * double(light.ddir[2]);
norm = 1.0 / sqrt(norm);
float norm_float = static_cast<float>(norm);
dstlight.dir[0] = light.ddir[0] * norm_float;
dstlight.dir[1] = light.ddir[1] * norm_float;
dstlight.dir[2] = light.ddir[2] * norm_float;
}
dirty = true;
nLightsChanged[0] = nLightsChanged[1] = -1;
}
for (int i : nMaterialsChanged)
{
u32 data = i >= 2 ? xfmem.matColor[i - 2] : xfmem.ambColor[i];
constants.materials[i][0] = (data >> 24) & 0xFF;
constants.materials[i][1] = (data >> 16) & 0xFF;
constants.materials[i][2] = (data >> 8) & 0xFF;
constants.materials[i][3] = data & 0xFF;
dirty = true;
}
nMaterialsChanged = BitSet32(0);
if (bPosNormalMatrixChanged)
{
bPosNormalMatrixChanged = false;
const float* pos = &xfmem.posMatrices[g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4];
const float* norm =
&xfmem.normalMatrices[3 * (g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31)];
memcpy(constants.posnormalmatrix.data(), pos, 3 * sizeof(float4));
memcpy(constants.posnormalmatrix[3].data(), norm, 3 * sizeof(float));
memcpy(constants.posnormalmatrix[4].data(), norm + 3, 3 * sizeof(float));
memcpy(constants.posnormalmatrix[5].data(), norm + 6, 3 * sizeof(float));
dirty = true;
}
if (bTexMatricesChanged[0])
{
bTexMatricesChanged[0] = false;
const std::array<const float*, 4> pos_matrix_ptrs{
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4],
};
for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i)
{
memcpy(constants.texmatrices[3 * i].data(), pos_matrix_ptrs[i], 3 * sizeof(float4));
}
dirty = true;
}
if (bTexMatricesChanged[1])
{
bTexMatricesChanged[1] = false;
const std::array<const float*, 4> pos_matrix_ptrs{
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4],
&xfmem.posMatrices[g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4],
};
for (size_t i = 0; i < pos_matrix_ptrs.size(); ++i)
{
memcpy(constants.texmatrices[3 * i + 12].data(), pos_matrix_ptrs[i], 3 * sizeof(float4));
}
dirty = true;
}
if (bViewportChanged)
{
bViewportChanged = false;
// The console GPU places the pixel center at 7/12 unless antialiasing
// is enabled, while D3D and OpenGL place it at 0.5. See the comment
// in VertexShaderGen.cpp for details.
// NOTE: If we ever emulate antialiasing, the sample locations set by
// BP registers 0x01-0x04 need to be considered here.
const float pixel_center_correction = 7.0f / 12.0f - 0.5f;
2017-07-03 16:32:02 +02:00
const bool bUseVertexRounding = g_ActiveConfig.bVertexRounding && g_ActiveConfig.iEFBScale != 1;
const float viewport_width = bUseVertexRounding ?
(2.f * xfmem.viewport.wd) :
g_renderer->EFBToScaledXf(2.f * xfmem.viewport.wd);
const float viewport_height = bUseVertexRounding ?
(2.f * xfmem.viewport.ht) :
g_renderer->EFBToScaledXf(2.f * xfmem.viewport.ht);
const float pixel_size_x = 2.f / viewport_width;
const float pixel_size_y = 2.f / viewport_height;
constants.pixelcentercorrection[0] = pixel_center_correction * pixel_size_x;
constants.pixelcentercorrection[1] = pixel_center_correction * pixel_size_y;
// By default we don't change the depth value at all in the vertex shader.
constants.pixelcentercorrection[2] = 1.0f;
constants.pixelcentercorrection[3] = 0.0f;
constants.viewport[0] = (2.f * xfmem.viewport.wd);
constants.viewport[1] = (2.f * xfmem.viewport.ht);
if (g_renderer->UseVertexDepthRange())
{
// Oversized depth ranges are handled in the vertex shader. We need to reverse
// the far value to use the reversed-Z trick.
if (g_ActiveConfig.backend_info.bSupportsReversedDepthRange)
{
// Sometimes the console also tries to use the reversed-Z trick. We can only do
// that with the expected accuracy if the backend can reverse the depth range.
constants.pixelcentercorrection[2] = fabs(xfmem.viewport.zRange) / 16777215.0f;
if (xfmem.viewport.zRange < 0.0f)
constants.pixelcentercorrection[3] = xfmem.viewport.farZ / 16777215.0f;
else
constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f;
}
else
{
// For backends that don't support reversing the depth range we can still render
// cases where the console uses the reversed-Z trick. But we simply can't provide
// the expected accuracy, which might result in z-fighting.
constants.pixelcentercorrection[2] = xfmem.viewport.zRange / 16777215.0f;
constants.pixelcentercorrection[3] = 1.0f - xfmem.viewport.farZ / 16777215.0f;
}
}
dirty = true;
BPFunctions::SetViewport();
// Update projection if the viewport isn't 1:1 useable
if (!g_ActiveConfig.backend_info.bSupportsOversizedViewports)
{
ViewportCorrectionMatrix(s_viewportCorrection);
bProjectionChanged = true;
}
}
if (bProjectionChanged)
{
bProjectionChanged = false;
float* rawProjection = xfmem.projection.rawProjection;
switch (xfmem.projection.type)
{
case GX_PERSPECTIVE:
g_fProjectionMatrix[0] = rawProjection[0] * g_ActiveConfig.fAspectRatioHackW;
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = rawProjection[1] * g_ActiveConfig.fAspectRatioHackW;
g_fProjectionMatrix[3] = 0.0f;
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = rawProjection[2] * g_ActiveConfig.fAspectRatioHackH;
g_fProjectionMatrix[6] = rawProjection[3] * g_ActiveConfig.fAspectRatioHackH;
g_fProjectionMatrix[7] = 0.0f;
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = rawProjection[4];
g_fProjectionMatrix[11] = rawProjection[5];
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
g_fProjectionMatrix[14] = -1.0f;
g_fProjectionMatrix[15] = 0.0f;
SETSTAT_FT(stats.gproj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.gproj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.gproj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.gproj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.gproj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.gproj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.gproj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.gproj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.gproj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.gproj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.gproj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.gproj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.gproj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.gproj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.gproj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.gproj_15, g_fProjectionMatrix[15]);
break;
case GX_ORTHOGRAPHIC:
g_fProjectionMatrix[0] = rawProjection[0];
g_fProjectionMatrix[1] = 0.0f;
g_fProjectionMatrix[2] = 0.0f;
g_fProjectionMatrix[3] = rawProjection[1];
g_fProjectionMatrix[4] = 0.0f;
g_fProjectionMatrix[5] = rawProjection[2];
g_fProjectionMatrix[6] = 0.0f;
g_fProjectionMatrix[7] = rawProjection[3];
g_fProjectionMatrix[8] = 0.0f;
g_fProjectionMatrix[9] = 0.0f;
g_fProjectionMatrix[10] = rawProjection[4];
g_fProjectionMatrix[11] = rawProjection[5];
g_fProjectionMatrix[12] = 0.0f;
g_fProjectionMatrix[13] = 0.0f;
g_fProjectionMatrix[14] = 0.0f;
g_fProjectionMatrix[15] = 1.0f;
SETSTAT_FT(stats.g2proj_0, g_fProjectionMatrix[0]);
SETSTAT_FT(stats.g2proj_1, g_fProjectionMatrix[1]);
SETSTAT_FT(stats.g2proj_2, g_fProjectionMatrix[2]);
SETSTAT_FT(stats.g2proj_3, g_fProjectionMatrix[3]);
SETSTAT_FT(stats.g2proj_4, g_fProjectionMatrix[4]);
SETSTAT_FT(stats.g2proj_5, g_fProjectionMatrix[5]);
SETSTAT_FT(stats.g2proj_6, g_fProjectionMatrix[6]);
SETSTAT_FT(stats.g2proj_7, g_fProjectionMatrix[7]);
SETSTAT_FT(stats.g2proj_8, g_fProjectionMatrix[8]);
SETSTAT_FT(stats.g2proj_9, g_fProjectionMatrix[9]);
SETSTAT_FT(stats.g2proj_10, g_fProjectionMatrix[10]);
SETSTAT_FT(stats.g2proj_11, g_fProjectionMatrix[11]);
SETSTAT_FT(stats.g2proj_12, g_fProjectionMatrix[12]);
SETSTAT_FT(stats.g2proj_13, g_fProjectionMatrix[13]);
SETSTAT_FT(stats.g2proj_14, g_fProjectionMatrix[14]);
SETSTAT_FT(stats.g2proj_15, g_fProjectionMatrix[15]);
SETSTAT_FT(stats.proj_0, rawProjection[0]);
SETSTAT_FT(stats.proj_1, rawProjection[1]);
SETSTAT_FT(stats.proj_2, rawProjection[2]);
SETSTAT_FT(stats.proj_3, rawProjection[3]);
SETSTAT_FT(stats.proj_4, rawProjection[4]);
SETSTAT_FT(stats.proj_5, rawProjection[5]);
break;
default:
ERROR_LOG(VIDEO, "Unknown projection type: %d", xfmem.projection.type);
}
PRIM_LOG("Projection: %f %f %f %f %f %f", rawProjection[0], rawProjection[1], rawProjection[2],
rawProjection[3], rawProjection[4], rawProjection[5]);
auto corrected_matrix = s_viewportCorrection * Common::Matrix44::FromArray(g_fProjectionMatrix);
if (g_ActiveConfig.bFreeLook && xfmem.projection.type == GX_PERSPECTIVE)
corrected_matrix *= s_freelook_matrix;
memcpy(constants.projection.data(), corrected_matrix.data.data(), 4 * sizeof(float4));
dirty = true;
}
if (bTexMtxInfoChanged)
{
bTexMtxInfoChanged = false;
constants.xfmem_dualTexInfo = xfmem.dualTexTrans.enabled;
for (size_t i = 0; i < std::size(xfmem.texMtxInfo); i++)
constants.xfmem_pack1[i][0] = xfmem.texMtxInfo[i].hex;
for (size_t i = 0; i < std::size(xfmem.postMtxInfo); i++)
constants.xfmem_pack1[i][1] = xfmem.postMtxInfo[i].hex;
dirty = true;
}
if (bLightingConfigChanged)
{
bLightingConfigChanged = false;
for (size_t i = 0; i < 2; i++)
{
constants.xfmem_pack1[i][2] = xfmem.color[i].hex;
constants.xfmem_pack1[i][3] = xfmem.alpha[i].hex;
}
constants.xfmem_numColorChans = xfmem.numChan.numColorChans;
dirty = true;
}
}
void VertexShaderManager::InvalidateXFRange(int start, int end)
{
if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx * 4 + 12) ||
((u32)start >=
XFMEM_NORMALMATRICES + ((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 &&
(u32)start < XFMEM_NORMALMATRICES +
((u32)g_main_cp_state.matrix_index_a.PosNormalMtxIdx & 31) * 3 + 9))
{
bPosNormalMatrixChanged = true;
}
if (((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex0MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex1MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex2MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_a.Tex3MtxIdx * 4 + 12))
{
bTexMatricesChanged[0] = true;
}
if (((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex4MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex5MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex6MtxIdx * 4 + 12) ||
((u32)start >= (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 &&
(u32)start < (u32)g_main_cp_state.matrix_index_b.Tex7MtxIdx * 4 + 12))
{
bTexMatricesChanged[1] = true;
}
if (start < XFMEM_POSMATRICES_END)
{
if (nTransformMatricesChanged[0] == -1)
{
nTransformMatricesChanged[0] = start;
nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end;
}
else
{
if (nTransformMatricesChanged[0] > start)
nTransformMatricesChanged[0] = start;
if (nTransformMatricesChanged[1] < end)
nTransformMatricesChanged[1] = end > XFMEM_POSMATRICES_END ? XFMEM_POSMATRICES_END : end;
}
}
if (start < XFMEM_NORMALMATRICES_END && end > XFMEM_NORMALMATRICES)
{
int _start = start < XFMEM_NORMALMATRICES ? 0 : start - XFMEM_NORMALMATRICES;
int _end = end < XFMEM_NORMALMATRICES_END ? end - XFMEM_NORMALMATRICES :
XFMEM_NORMALMATRICES_END - XFMEM_NORMALMATRICES;
if (nNormalMatricesChanged[0] == -1)
{
nNormalMatricesChanged[0] = _start;
nNormalMatricesChanged[1] = _end;
}
else
{
if (nNormalMatricesChanged[0] > _start)
nNormalMatricesChanged[0] = _start;
if (nNormalMatricesChanged[1] < _end)
nNormalMatricesChanged[1] = _end;
}
}
if (start < XFMEM_POSTMATRICES_END && end > XFMEM_POSTMATRICES)
{
int _start = start < XFMEM_POSTMATRICES ? XFMEM_POSTMATRICES : start - XFMEM_POSTMATRICES;
int _end = end < XFMEM_POSTMATRICES_END ? end - XFMEM_POSTMATRICES :
XFMEM_POSTMATRICES_END - XFMEM_POSTMATRICES;
if (nPostTransformMatricesChanged[0] == -1)
{
nPostTransformMatricesChanged[0] = _start;
nPostTransformMatricesChanged[1] = _end;
}
else
{
if (nPostTransformMatricesChanged[0] > _start)
nPostTransformMatricesChanged[0] = _start;
if (nPostTransformMatricesChanged[1] < _end)
nPostTransformMatricesChanged[1] = _end;
}
}
if (start < XFMEM_LIGHTS_END && end > XFMEM_LIGHTS)
{
int _start = start < XFMEM_LIGHTS ? XFMEM_LIGHTS : start - XFMEM_LIGHTS;
int _end = end < XFMEM_LIGHTS_END ? end - XFMEM_LIGHTS : XFMEM_LIGHTS_END - XFMEM_LIGHTS;
if (nLightsChanged[0] == -1)
{
nLightsChanged[0] = _start;
nLightsChanged[1] = _end;
}
else
{
if (nLightsChanged[0] > _start)
nLightsChanged[0] = _start;
if (nLightsChanged[1] < _end)
nLightsChanged[1] = _end;
}
}
}
void VertexShaderManager::SetTexMatrixChangedA(u32 Value)
{
if (g_main_cp_state.matrix_index_a.Hex != Value)
{
g_vertex_manager->Flush();
if (g_main_cp_state.matrix_index_a.PosNormalMtxIdx != (Value & 0x3f))
bPosNormalMatrixChanged = true;
bTexMatricesChanged[0] = true;
g_main_cp_state.matrix_index_a.Hex = Value;
}
}
void VertexShaderManager::SetTexMatrixChangedB(u32 Value)
{
if (g_main_cp_state.matrix_index_b.Hex != Value)
{
g_vertex_manager->Flush();
bTexMatricesChanged[1] = true;
g_main_cp_state.matrix_index_b.Hex = Value;
}
}
void VertexShaderManager::SetViewportChanged()
{
bViewportChanged = true;
}
void VertexShaderManager::SetProjectionChanged()
{
bProjectionChanged = true;
}
void VertexShaderManager::SetMaterialColorChanged(int index)
{
nMaterialsChanged[index] = true;
}
void VertexShaderManager::TranslateView(float x, float y, float z)
{
s_freelook_matrix = Common::Matrix44::Translate({x, z, y}) * s_freelook_matrix;
bProjectionChanged = true;
}
void VertexShaderManager::RotateView(float x, float y, float z)
{
using Common::Matrix33;
s_freelook_matrix = Common::Matrix44::FromMatrix33(Matrix33::RotateX(x) * Matrix33::RotateY(y) *
Matrix33::RotateZ(z)) *
s_freelook_matrix;
bProjectionChanged = true;
}
void VertexShaderManager::ResetView()
{
s_freelook_matrix = Common::Matrix44::Identity();
bProjectionChanged = true;
}
void VertexShaderManager::SetVertexFormat(u32 components)
{
if (components != constants.components)
{
constants.components = components;
dirty = true;
}
}
void VertexShaderManager::SetTexMatrixInfoChanged(int index)
{
// TODO: Should we track this with more precision, like which indices changed?
// The whole vertex constants are probably going to be uploaded regardless.
bTexMtxInfoChanged = true;
}
void VertexShaderManager::SetLightingConfigChanged()
{
bLightingConfigChanged = true;
}
void VertexShaderManager::TransformToClipSpace(const float* data, float* out, u32 MtxIdx)
{
const float* world_matrix = &xfmem.posMatrices[(MtxIdx & 0x3f) * 4];
// We use the projection matrix calculated by VertexShaderManager, because it
// includes any free look transformations.
// Make sure VertexShaderManager::SetConstants() has been called first.
const float* proj_matrix = &g_fProjectionMatrix[0];
const float t[3] = {data[0] * world_matrix[0] + data[1] * world_matrix[1] +
data[2] * world_matrix[2] + world_matrix[3],
data[0] * world_matrix[4] + data[1] * world_matrix[5] +
data[2] * world_matrix[6] + world_matrix[7],
data[0] * world_matrix[8] + data[1] * world_matrix[9] +
data[2] * world_matrix[10] + world_matrix[11]};
out[0] = t[0] * proj_matrix[0] + t[1] * proj_matrix[1] + t[2] * proj_matrix[2] + proj_matrix[3];
out[1] = t[0] * proj_matrix[4] + t[1] * proj_matrix[5] + t[2] * proj_matrix[6] + proj_matrix[7];
out[2] = t[0] * proj_matrix[8] + t[1] * proj_matrix[9] + t[2] * proj_matrix[10] + proj_matrix[11];
out[3] =
t[0] * proj_matrix[12] + t[1] * proj_matrix[13] + t[2] * proj_matrix[14] + proj_matrix[15];
}
void VertexShaderManager::DoState(PointerWrap& p)
{
p.Do(g_fProjectionMatrix);
p.Do(s_viewportCorrection);
p.Do(s_freelook_matrix);
p.Do(nTransformMatricesChanged);
p.Do(nNormalMatricesChanged);
p.Do(nPostTransformMatricesChanged);
p.Do(nLightsChanged);
p.Do(nMaterialsChanged);
p.Do(bTexMatricesChanged);
p.Do(bPosNormalMatrixChanged);
p.Do(bProjectionChanged);
p.Do(bViewportChanged);
p.Do(bTexMtxInfoChanged);
p.Do(bLightingConfigChanged);
p.Do(constants);
if (p.GetMode() == PointerWrap::MODE_READ)
{
Dirty();
}
}