dolphin/Source/Core/VideoCommon/RenderBase.cpp

628 lines
18 KiB
C++

// Copyright 2010 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.
// ---------------------------------------------------------------------------------------------
// GC graphics pipeline
// ---------------------------------------------------------------------------------------------
// 3d commands are issued through the fifo. The GPU draws to the 2MB EFB.
// The efb can be copied back into ram in two forms: as textures or as XFB.
// The XFB is the region in RAM that the VI chip scans out to the television.
// So, after all rendering to EFB is done, the image is copied into one of two XFBs in RAM.
// Next frame, that one is scanned out and the other one gets the copy. = double buffering.
// ---------------------------------------------------------------------------------------------
#include <cinttypes>
#include <cmath>
#include <memory>
#include <mutex>
#include <string>
#include "Common/CommonTypes.h"
#include "Common/Event.h"
#include "Common/FileUtil.h"
#include "Common/Flag.h"
#include "Common/Profiler.h"
#include "Common/StringUtil.h"
#include "Common/Timer.h"
#include "Core/ConfigManager.h"
#include "Core/Core.h"
#include "Core/FifoPlayer/FifoRecorder.h"
#include "Core/HW/VideoInterface.h"
#include "Core/Host.h"
#include "Core/Movie.h"
#include "OnScreenDisplay.h"
#include "VideoCommon/AVIDump.h"
#include "VideoCommon/BPMemory.h"
#include "VideoCommon/CPMemory.h"
#include "VideoCommon/CommandProcessor.h"
#include "VideoCommon/Debugger.h"
#include "VideoCommon/FPSCounter.h"
#include "VideoCommon/FramebufferManagerBase.h"
#include "VideoCommon/ImageWrite.h"
#include "VideoCommon/PostProcessing.h"
#include "VideoCommon/RenderBase.h"
#include "VideoCommon/Statistics.h"
#include "VideoCommon/TextureCacheBase.h"
#include "VideoCommon/VideoConfig.h"
#include "VideoCommon/XFMemory.h"
// TODO: Move these out of here.
int frameCount;
std::unique_ptr<Renderer> g_renderer;
std::mutex Renderer::s_criticalScreenshot;
std::string Renderer::s_sScreenshotName;
Common::Event Renderer::s_screenshotCompleted;
volatile bool Renderer::s_bScreenshot;
// The framebuffer size
int Renderer::s_target_width;
int Renderer::s_target_height;
// TODO: Add functionality to reinit all the render targets when the window is resized.
int Renderer::s_backbuffer_width;
int Renderer::s_backbuffer_height;
std::unique_ptr<PostProcessingShaderImplementation> Renderer::m_post_processor;
// Final surface changing
Common::Flag Renderer::s_surface_needs_change;
Common::Event Renderer::s_surface_changed;
void* Renderer::s_new_surface_handle;
TargetRectangle Renderer::target_rc;
int Renderer::s_last_efb_scale;
bool Renderer::XFBWrited;
PEControl::PixelFormat Renderer::prev_efb_format = PEControl::INVALID_FMT;
unsigned int Renderer::efb_scale_numeratorX = 1;
unsigned int Renderer::efb_scale_numeratorY = 1;
unsigned int Renderer::efb_scale_denominatorX = 1;
unsigned int Renderer::efb_scale_denominatorY = 1;
// The maximum depth that is written to the depth buffer should never exceed this value.
// This is necessary because we use a 2^24 divisor for all our depth values to prevent
// floating-point round-trip errors. However the console GPU doesn't ever write a value
// to the depth buffer that exceeds 2^24 - 1.
const float Renderer::GX_MAX_DEPTH = 16777215.0f / 16777216.0f;
static float AspectToWidescreen(float aspect)
{
return aspect * ((16.0f / 9.0f) / (4.0f / 3.0f));
}
Renderer::Renderer()
{
UpdateActiveConfig();
TextureCacheBase::OnConfigChanged(g_ActiveConfig);
}
Renderer::~Renderer()
{
// invalidate previous efb format
prev_efb_format = PEControl::INVALID_FMT;
efb_scale_numeratorX = efb_scale_numeratorY = efb_scale_denominatorX = efb_scale_denominatorY = 1;
#if defined(HAVE_LIBAV) || defined(_WIN32)
// Stop frame dumping if it was left enabled at shutdown time.
if (m_AVI_dumping)
{
AVIDump::Stop();
m_AVI_dumping = false;
}
#endif
}
void Renderer::RenderToXFB(u32 xfbAddr, const EFBRectangle& sourceRc, u32 fbStride, u32 fbHeight,
float Gamma)
{
CheckFifoRecording();
if (!fbStride || !fbHeight)
return;
XFBWrited = true;
if (g_ActiveConfig.bUseXFB)
{
FramebufferManagerBase::CopyToXFB(xfbAddr, fbStride, fbHeight, sourceRc, Gamma);
}
else
{
// below div two to convert from bytes to pixels - it expects width, not stride
Swap(xfbAddr, fbStride / 2, fbStride / 2, fbHeight, sourceRc, Gamma);
}
}
int Renderer::EFBToScaledX(int x)
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbWidth(x);
default:
return x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
};
}
int Renderer::EFBToScaledY(int y)
{
switch (g_ActiveConfig.iEFBScale)
{
case SCALE_AUTO: // fractional
return FramebufferManagerBase::ScaleToVirtualXfbHeight(y);
default:
return y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
};
}
void Renderer::CalculateTargetScale(int x, int y, int* scaledX, int* scaledY)
{
if (g_ActiveConfig.iEFBScale == SCALE_AUTO || g_ActiveConfig.iEFBScale == SCALE_AUTO_INTEGRAL)
{
*scaledX = x;
*scaledY = y;
}
else
{
*scaledX = x * (int)efb_scale_numeratorX / (int)efb_scale_denominatorX;
*scaledY = y * (int)efb_scale_numeratorY / (int)efb_scale_denominatorY;
}
}
// return true if target size changed
bool Renderer::CalculateTargetSize(unsigned int framebuffer_width, unsigned int framebuffer_height)
{
int newEFBWidth, newEFBHeight;
newEFBWidth = newEFBHeight = 0;
// TODO: Ugly. Clean up
switch (s_last_efb_scale)
{
case SCALE_AUTO:
case SCALE_AUTO_INTEGRAL:
newEFBWidth = FramebufferManagerBase::ScaleToVirtualXfbWidth(EFB_WIDTH);
newEFBHeight = FramebufferManagerBase::ScaleToVirtualXfbHeight(EFB_HEIGHT);
if (s_last_efb_scale == SCALE_AUTO_INTEGRAL)
{
efb_scale_numeratorX = efb_scale_numeratorY =
std::max((newEFBWidth - 1) / EFB_WIDTH + 1, (newEFBHeight - 1) / EFB_HEIGHT + 1);
efb_scale_denominatorX = efb_scale_denominatorY = 1;
newEFBWidth = EFBToScaledX(EFB_WIDTH);
newEFBHeight = EFBToScaledY(EFB_HEIGHT);
}
else
{
efb_scale_numeratorX = newEFBWidth;
efb_scale_denominatorX = EFB_WIDTH;
efb_scale_numeratorY = newEFBHeight;
efb_scale_denominatorY = EFB_HEIGHT;
}
break;
case SCALE_1X:
efb_scale_numeratorX = efb_scale_numeratorY = 1;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case SCALE_1_5X:
efb_scale_numeratorX = efb_scale_numeratorY = 3;
efb_scale_denominatorX = efb_scale_denominatorY = 2;
break;
case SCALE_2X:
efb_scale_numeratorX = efb_scale_numeratorY = 2;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
break;
case SCALE_2_5X:
efb_scale_numeratorX = efb_scale_numeratorY = 5;
efb_scale_denominatorX = efb_scale_denominatorY = 2;
break;
default:
efb_scale_numeratorX = efb_scale_numeratorY = s_last_efb_scale - 3;
efb_scale_denominatorX = efb_scale_denominatorY = 1;
const u32 max_size = GetMaxTextureSize();
if (max_size < EFB_WIDTH * efb_scale_numeratorX / efb_scale_denominatorX)
{
efb_scale_numeratorX = efb_scale_numeratorY = (max_size / EFB_WIDTH);
efb_scale_denominatorX = efb_scale_denominatorY = 1;
}
break;
}
if (s_last_efb_scale > SCALE_AUTO_INTEGRAL)
CalculateTargetScale(EFB_WIDTH, EFB_HEIGHT, &newEFBWidth, &newEFBHeight);
if (newEFBWidth != s_target_width || newEFBHeight != s_target_height)
{
s_target_width = newEFBWidth;
s_target_height = newEFBHeight;
return true;
}
return false;
}
void Renderer::ConvertStereoRectangle(const TargetRectangle& rc, TargetRectangle& leftRc,
TargetRectangle& rightRc)
{
// Resize target to half its original size
TargetRectangle drawRc = rc;
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
{
// The height may be negative due to flipped rectangles
int height = rc.bottom - rc.top;
drawRc.top += height / 4;
drawRc.bottom -= height / 4;
}
else
{
int width = rc.right - rc.left;
drawRc.left += width / 4;
drawRc.right -= width / 4;
}
// Create two target rectangle offset to the sides of the backbuffer
leftRc = drawRc, rightRc = drawRc;
if (g_ActiveConfig.iStereoMode == STEREO_TAB)
{
leftRc.top -= s_backbuffer_height / 4;
leftRc.bottom -= s_backbuffer_height / 4;
rightRc.top += s_backbuffer_height / 4;
rightRc.bottom += s_backbuffer_height / 4;
}
else
{
leftRc.left -= s_backbuffer_width / 4;
leftRc.right -= s_backbuffer_width / 4;
rightRc.left += s_backbuffer_width / 4;
rightRc.right += s_backbuffer_width / 4;
}
}
void Renderer::SetScreenshot(const std::string& filename)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
s_sScreenshotName = filename;
s_bScreenshot = true;
}
void Renderer::DrawDebugText()
{
auto draw_text = [](OSD::MessageType type, const std::string& message) {
OSD::AddTypedMessage(type, message, OSD::Duration::SHORT, OSD::Color::CYAN);
};
if (g_ActiveConfig.bShowFPS)
{
draw_text(OSD::MessageType::FPS,
StringFromFormat("FPS: %u", g_renderer->m_fps_counter.GetFPS()));
}
if (SConfig::GetInstance().m_ShowFrameCount)
{
draw_text(OSD::MessageType::FrameCount,
StringFromFormat("Frame: %" PRIu64, Movie::GetCurrentFrame()));
if (Movie::IsPlayingInput())
{
draw_text(OSD::MessageType::MovieInputCount,
StringFromFormat("Input: %" PRIu64 " / %" PRIu64, Movie::GetCurrentInputCount(),
Movie::GetTotalInputCount()));
}
}
if (SConfig::GetInstance().m_ShowLag)
{
draw_text(OSD::MessageType::MovieLag,
StringFromFormat("Lag: %" PRIu64, Movie::GetCurrentLagCount()));
}
if (SConfig::GetInstance().m_ShowInputDisplay)
{
draw_text(OSD::MessageType::MovieInput, Movie::GetInputDisplay());
}
if (SConfig::GetInstance().m_ShowRTC)
{
draw_text(OSD::MessageType::RTC, Movie::GetRTCDisplay());
}
}
void Renderer::UpdateDrawRectangle(int backbuffer_width, int backbuffer_height)
{
float FloatGLWidth = (float)backbuffer_width;
float FloatGLHeight = (float)backbuffer_height;
float FloatXOffset = 0;
float FloatYOffset = 0;
// The rendering window size
const float WinWidth = FloatGLWidth;
const float WinHeight = FloatGLHeight;
// Update aspect ratio hack values
// Won't take effect until next frame
// Don't know if there is a better place for this code so there isn't a 1 frame delay
if (g_ActiveConfig.bWidescreenHack)
{
float source_aspect = VideoInterface::GetAspectRatio();
if (Core::g_aspect_wide)
source_aspect = AspectToWidescreen(source_aspect);
float target_aspect;
switch (g_ActiveConfig.iAspectRatio)
{
case ASPECT_STRETCH:
target_aspect = WinWidth / WinHeight;
break;
case ASPECT_ANALOG:
target_aspect = VideoInterface::GetAspectRatio();
break;
case ASPECT_ANALOG_WIDE:
target_aspect = AspectToWidescreen(VideoInterface::GetAspectRatio());
break;
default:
// ASPECT_AUTO
target_aspect = source_aspect;
break;
}
float adjust = source_aspect / target_aspect;
if (adjust > 1)
{
// Vert+
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1 / adjust;
}
else
{
// Hor+
g_Config.fAspectRatioHackW = adjust;
g_Config.fAspectRatioHackH = 1;
}
}
else
{
// Hack is disabled
g_Config.fAspectRatioHackW = 1;
g_Config.fAspectRatioHackH = 1;
}
// Check for force-settings and override.
// The rendering window aspect ratio as a proportion of the 4:3 or 16:9 ratio
float Ratio;
if (g_ActiveConfig.iAspectRatio == ASPECT_ANALOG_WIDE ||
(g_ActiveConfig.iAspectRatio != ASPECT_ANALOG && Core::g_aspect_wide))
{
Ratio = (WinWidth / WinHeight) / AspectToWidescreen(VideoInterface::GetAspectRatio());
}
else
{
Ratio = (WinWidth / WinHeight) / VideoInterface::GetAspectRatio();
}
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH)
{
if (Ratio > 1.0f)
{
// Scale down and center in the X direction.
FloatGLWidth /= Ratio;
FloatXOffset = (WinWidth - FloatGLWidth) / 2.0f;
}
// The window is too high, we have to limit the height
else
{
// Scale down and center in the Y direction.
FloatGLHeight *= Ratio;
FloatYOffset = FloatYOffset + (WinHeight - FloatGLHeight) / 2.0f;
}
}
// -----------------------------------------------------------------------
// Crop the picture from Analog to 4:3 or from Analog (Wide) to 16:9.
// Output: FloatGLWidth, FloatGLHeight, FloatXOffset, FloatYOffset
// ------------------
if (g_ActiveConfig.iAspectRatio != ASPECT_STRETCH && g_ActiveConfig.bCrop)
{
Ratio = (4.0f / 3.0f) / VideoInterface::GetAspectRatio();
if (Ratio <= 1.0f)
{
Ratio = 1.0f / Ratio;
}
// The width and height we will add (calculate this before FloatGLWidth and FloatGLHeight is
// adjusted)
float IncreasedWidth = (Ratio - 1.0f) * FloatGLWidth;
float IncreasedHeight = (Ratio - 1.0f) * FloatGLHeight;
// The new width and height
FloatGLWidth = FloatGLWidth * Ratio;
FloatGLHeight = FloatGLHeight * Ratio;
// Adjust the X and Y offset
FloatXOffset = FloatXOffset - (IncreasedWidth * 0.5f);
FloatYOffset = FloatYOffset - (IncreasedHeight * 0.5f);
}
int XOffset = (int)(FloatXOffset + 0.5f);
int YOffset = (int)(FloatYOffset + 0.5f);
int iWhidth = (int)ceil(FloatGLWidth);
int iHeight = (int)ceil(FloatGLHeight);
iWhidth -=
iWhidth % 4; // ensure divisibility by 4 to make it compatible with all the video encoders
iHeight -= iHeight % 4;
target_rc.left = XOffset;
target_rc.top = YOffset;
target_rc.right = XOffset + iWhidth;
target_rc.bottom = YOffset + iHeight;
}
void Renderer::SetWindowSize(int width, int height)
{
if (width < 1)
width = 1;
if (height < 1)
height = 1;
// Scale the window size by the EFB scale.
CalculateTargetScale(width, height, &width, &height);
Host_RequestRenderWindowSize(width, height);
}
void Renderer::CheckFifoRecording()
{
bool wasRecording = g_bRecordFifoData;
g_bRecordFifoData = FifoRecorder::GetInstance().IsRecording();
if (g_bRecordFifoData)
{
if (!wasRecording)
{
RecordVideoMemory();
}
FifoRecorder::GetInstance().EndFrame(CommandProcessor::fifo.CPBase,
CommandProcessor::fifo.CPEnd);
}
}
void Renderer::RecordVideoMemory()
{
const u32* bpmem_ptr = reinterpret_cast<const u32*>(&bpmem);
u32 cpmem[256] = {};
// The FIFO recording format splits XF memory into xfmem and xfregs; follow
// that split here.
const u32* xfmem_ptr = reinterpret_cast<const u32*>(&xfmem);
const u32* xfregs_ptr = reinterpret_cast<const u32*>(&xfmem) + FifoDataFile::XF_MEM_SIZE;
u32 xfregs_size = sizeof(XFMemory) / 4 - FifoDataFile::XF_MEM_SIZE;
FillCPMemoryArray(cpmem);
FifoRecorder::GetInstance().SetVideoMemory(bpmem_ptr, cpmem, xfmem_ptr, xfregs_ptr, xfregs_size);
}
void Renderer::Swap(u32 xfbAddr, u32 fbWidth, u32 fbStride, u32 fbHeight, const EFBRectangle& rc,
float Gamma)
{
// TODO: merge more generic parts into VideoCommon
g_renderer->SwapImpl(xfbAddr, fbWidth, fbStride, fbHeight, rc, Gamma);
if (XFBWrited)
g_renderer->m_fps_counter.Update();
frameCount++;
GFX_DEBUGGER_PAUSE_AT(NEXT_FRAME, true);
// Begin new frame
// Set default viewport and scissor, for the clear to work correctly
// New frame
stats.ResetFrame();
Core::Callback_VideoCopiedToXFB(XFBWrited ||
(g_ActiveConfig.bUseXFB && g_ActiveConfig.bUseRealXFB));
XFBWrited = false;
}
bool Renderer::IsFrameDumping()
{
if (s_bScreenshot)
return true;
#if defined(HAVE_LIBAV) || defined(_WIN32)
if (SConfig::GetInstance().m_DumpFrames)
return true;
if (m_last_frame_dumped && m_AVI_dumping)
{
AVIDump::Stop();
std::vector<u8>().swap(m_frame_data);
m_AVI_dumping = false;
OSD::AddMessage("Stop dumping frames", 2000);
}
m_last_frame_dumped = false;
#endif
return false;
}
void Renderer::DumpFrameData(const u8* data, int w, int h, int stride, bool swap_upside_down)
{
if (w == 0 || h == 0)
return;
// TODO: Refactor this. Right now it's needed for the implace flipping of the image.
m_frame_data.assign(data, data + stride * h);
if (swap_upside_down)
FlipImageData(m_frame_data.data(), w, h, 4);
// Save screenshot
if (s_bScreenshot)
{
std::lock_guard<std::mutex> lk(s_criticalScreenshot);
if (TextureToPng(m_frame_data.data(), stride, s_sScreenshotName, w, h, false))
OSD::AddMessage("Screenshot saved to " + s_sScreenshotName);
// Reset settings
s_sScreenshotName.clear();
s_bScreenshot = false;
s_screenshotCompleted.Set();
}
#if defined(HAVE_LIBAV) || defined(_WIN32)
if (SConfig::GetInstance().m_DumpFrames)
{
if (!m_last_frame_dumped)
{
m_AVI_dumping = AVIDump::Start(w, h);
if (!m_AVI_dumping)
{
OSD::AddMessage("AVIDump Start failed", 2000);
}
else
{
OSD::AddMessage(StringFromFormat("Dumping Frames to \"%sframedump0.avi\" (%dx%d RGB24)",
File::GetUserPath(D_DUMPFRAMES_IDX).c_str(), w, h),
2000);
}
}
if (m_AVI_dumping)
{
AVIDump::AddFrame(m_frame_data.data(), w, h, stride);
}
m_last_frame_dumped = true;
}
#endif
}
void Renderer::FinishFrameData()
{
}
void Renderer::FlipImageData(u8* data, int w, int h, int pixel_width)
{
for (int y = 0; y < h / 2; ++y)
{
for (int x = 0; x < w; ++x)
{
for (int delta = 0; delta < pixel_width; ++delta)
std::swap(data[(y * w + x) * pixel_width + delta],
data[((h - 1 - y) * w + x) * pixel_width + delta]);
}
}
}